
 Department of Electrical & Electronics Engineering, Amrita School of Engineering

VerilogHDL

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Module Structure

module

inputs Outputs Design

Ports

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Basic Modeling structure

• Begins with keyword module and

ends with keyword endmodule

• Case –sensitive

• All keywords are lowercase

• Whitespace for readability

• Semicolon is the statement

terminator

• // single line comment

• /*…*/ Multiline comment

module module_name(port_list);

endmodule

port declarations

data type declarations

circuit functionality

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Modules and Ports

• Module name includes port list

• Port types

– Input

– Output

– inout

• Port declarations

<port type> <port name>

module SR_latch(Q, Qbar, Sbar, Rbar);

output Q, Qbar;

input Sbar, Rbar;

…

…

…

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

First Exercise – Gate level
• Develop the Boolean function of output

• Draw the circuit with logic gates/primitives

• Connect gates/primitives with net (usually wire)

• write HDL description

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Primitives
• Primitives are modules ready to be instanced

• Verilog build-in primitive gate

–and, or, xor, nand, nor, xnor

• <prim_name>< inst_name>(out0, in0, in1,....);

–not, buf

• <prim_name>< inst_name>(out0, out1, ..., in0);

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate-level Modeling

• Examples

module halfadder (S,C,x,y);

 input x,y;

 output S,C;

//Instantiate primitive gates

 xor (S,x,y);

 and (C,x,y);

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Data Types
• Value set

• Nets

• Registers

• Vectors

• Integer & Real

• Strings

• Arrays

• Memory

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Value Set
• 0 – Logic zero, false condition

• 1 – Logic one, true condition

• x – Unknown logic value

• z – High Impedance, floating state

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Vectors
• Multiple bit widths
• Nets or reg data types can be declared as vectors

 input a; // scalar net variable, default

 wire a;

 input [3:0] a; // 4-bit signal

 wire [7:0] bus; // 8-bit bus

• Vectors can be declared as
 [high# : low#]

 [low# : high#]

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate Types

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate Types

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate Types

• Keywords: buf not

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate Types
•bufif / notif

•additional control signals on buf and not gates

 bufif1 notif1

 bufif0 notif0

•gates propagate only if their control signal is asserted

•propagate z if their control signal is deasserted

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Gate Types

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Examples

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Examples

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Stimulus block
module stimulus;

// Declare variables to be connected to inputs

reg IN0, IN1, IN2, IN3;

reg S1, S0;

// Declare output wire

wire OUTPUT;

// Instantiate the multiplexer

mux4_to_1 mymux(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);

// Stimulate the inputs. Define the stimulus module(no ports)

initial

begin

// set input lines

IN0 = 1; IN1 = 0; IN2 = 1; IN3 = 0;

#100 S1 = 0; S0 = 0;

#100 S1 = 0; S0 = 1;

#100 S1 = 1; S0 = 0;

#100 S1 = 1; S0 = 1;

end

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Dataflow Modeling

