
 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Dataflow Modeling

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Dataflow modeling
• gate-level modeling approach works very well only for

small circuits

• implements the function at a level of abstraction higher than
gate level

• data flow between registers and processes data rather than
instantiation of individual gates

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

output out;

input i0, i1, i2, i3, s1, s0;

assign out = (~s1 & ~s0 & i0)|(~s1 & s0 & i1)|(s1&~s0&i2)|(s1&s0&i3);

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Continuous Assignments
• most basic statement in dataflow modeling, used to drive a

value onto a net.

• Continuous assignments are always active.

• assignment expression is evaluated as soon as one of the

right-hand-side operands changes and the value is

assigned to the left-hand-side net.

• The operands on the right-hand side can be registers or
nets or function calls.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Expressions, Operators and Operands

• Expressions are constructs that combine operators and

operands to produce a result.

• Operands can be constants, integers, real numbers, nets,

registers, and memories or function calls.

 c = a - b; //a and b are real operands

• Operators act on the operands to produce desired results

 d1 && d2 // && is an operator on operands d1 and d2

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Number Specification

• Sized numbers are represented as

 <size> '<base format> <number>

 <size> is written in decimal and specifies the number of bits in the number.

 base formats are decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and

 octal ('o or 'O)

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number

Unsized numbers
23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Number Specification

x and z Values
12'h13x // 12-bit hex number; 4 LSB bits unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

Negative numbers
-8'd3 //8-bit negative number stored as 2's complement of 3

4'd-2 // Illegal specification

Underscore characters
12'b1111_0000_1010 // underline characters for readability

Strings
"Verilog HDL " // is a string

"a / b" // is a string

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Operator Types

• Arithmetic operators

• Logical operators

• Relational operators

• Equality operators

• Bitwise operators

• Reduction operators

• Shift operators

• Concatenation operators

• Conditional operators

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Arithmetic operators

A = 4'b0011; B = 4'b0100; // A and B are vectors

D = 6; E = 4; F=2 // D and E are integers

A * B // Multiply A and B. Evaluates to 4'b1100

D / E // Divide D by E. Evaluates to 1. Truncates any

 fractional part.

A + B // Add A and B. Evaluates to 4'b0111

B - A // Subtract A from B. Evaluates to 4'b0001

F = E ** F; //E to the power F, yields 16

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Arithmetic operators

• Unary operators

• The operators + and - can also work as unary operators.

• They are used to specify the positive or negative sign of

the operand

• Have higher precedence than binary operators

 -4 // Negative 4

 +5 // Positive 5

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Logical operators

A = 3; B = 0;

A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0)

A || B // Evaluates to 1. Equivalent to (logical-1 || logical-0)

!A // Evaluates to 0. Equivalent to not(logical-1)

!B // Evaluates to 1. Equivalent to not(logical-0)

A = 2'b0x; B = 2'b10;

A && B // Evaluates to x. Equivalent to (x && logical 1)

(a == 2) && (b == 3) // Evaluates to 0

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Relational operators

// A = 4, B = 3

// X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx

A <= B // Evaluates to a logical 0

A > B // Evaluates to a logical 1

Y >= X // Evaluates to a logical 1

Y < Z // Evaluates to an x

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Equality operators

// A = 4, B = 3

// X = 4'b1010, Y = 4'b1101

// Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx

A == B // Results in logical 0

X != Y // Results in logical 1

X == Z // Results in x

Z === M //Results in logical 1(all bits match,including x and z)

Z === N //Results in logical 0 (LSB does not match)

M !== N // Results in logical 1

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Bitwise operators

// X = 4'b1010, Y = 4'b1101

// Z = 4'b10x1

~X // Negation. Result is 4'b0101

X & Y // Bitwise and. Result is 4'b1000

X | Y // Bitwise or. Result is 4'b1111

X ^ Y // Bitwise xor. Result is 4'b0111

X ^~ Y // Bitwise xnor. Result is 4'b1000

X & Z // Result is 4'b10x0

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Reduction operators

// X = 4'b1010

&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0

|X //Equivalent to 1 | 0 | 1 | 0. Results in 1'b1

^X //Equivalent to 1 ^ 0 ^ 1 ^ 0. Results in 1'b0

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Shift operators

// X = 4'b1100

Y = X >> 1; //Y is 4'b0110. Shift right 1 bit. 0 filled in MSB

 position.

Y = X << 1; //Y is 4'b1000. Shift left 1 bit. 0 filled in LSB

 position.

Y = X << 2; //Y is 4'b0000. Shift left 2 bits.

integer a, b, c; //Signed data types

a = 0;

b = -10; // 00111...10110 binary

c = a + (b >>> 3); //Results in -2 decimal, due to arithmetic shift

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Concatenation, reduction & conditional operators

// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'b110

Y = {B , C} // Result Y is 4'b0010

Y = {A , B , C , D , 3'b001} //Result Y is 11'b10010110001

Y = {A , B[0], C[1]} // Result Y is 3'b101

A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110;

Y = { 4{A} } // Result Y is 4'b1111

Y = { 4{A} , 2{B} } // Result Y is 8'b11110000

Y = { 4{A} , 2{B} , C } // Result Y is 8'b1111000010

condition_expr ? true_expr : false_expr ;

assign out = control ? in1 : in0;

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Operators precedence

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Examples

