#### **19EEE114 Electrical & Electronic Circuits**

# Bipolar Junction Transistors (BJT)

#### Transistors

- Evolution of electronics
  - In need of a device that was small, robust, reliable, energy efficient and cheap to manufacture
- 1947

#### - John Bardeen, Walter Brattain and William Shockley invented transistor

- Transistor Effect
  - "when electrical contacts were applied to a crystal of germanium, the output power was larger than the input."



#### Transistors



**First Transistor** 



Different types and sizes



**Modern Electronics** 

#### **General Applications**



#### **BJT Device Structure**

• A transistor has three doped regions: Emitter, Base, Collector



#### **Unbiased Transistor**

- A transistor has three doped regions: Emitter, Base, Collector
- Doping Levels the emitter is heavily doped; the base is lightly doped; the collector is intermediately doped
- As a result of diffusion two depletion layers
- the barrier potential is approx. 0.7 V at 25°C for silicon



- V<sub>BE</sub> forward-biases the emitter diode
- V<sub>CB</sub> reverse-biases the collector



- Heavily doped emitter emits or injects its free electrons into the base
- Holes diffuse from the base into the emitter
- Current through EB junction is Emitter current,  $i_E$



- Lightly doped base passes emitter-injected electrons on to the collector.
- Only a few free electrons will recombine with holes in the lightly doped base
- Resulting in Base current,  $i_B$



- Most diffusing electrons will reach boundary of collector-base depletion region
- Because collector is more positive than base, these electrons are swept into collector
- Resulting in Collector current,  $i_C$



#### Current Flow in BJT

- Three different currents in a transistor: emitter current  $i_E$ , base current  $i_B$ , and collector current  $i_C$ .
- Collector current,  $i_C = I_s e^{v_{BE}/V_T}$
- Base current,  $i_B$

$$i_{B} = \frac{i_{C}}{\beta} \qquad \qquad i_{B} = \frac{I_{S}}{\beta} \mathbf{e}^{v_{BE}/v_{T}}$$

β Common Emitter current gain

• Emitter current,  $i_E = i_C + i_B$ 

$$i_{E} = \frac{\beta + 1}{\beta} i_{C} \qquad \alpha = \frac{\beta}{\beta + 1} \qquad \beta = \frac{\alpha}{1 - \alpha}$$
$$i_{C} = \alpha i_{E} \qquad \qquad l_{B} << l_{C} \qquad l_{C} \approx l_{E}$$

#### **Transistor Currents**

- dc alpha  $\alpha_{dc}$  dc collector current divided by the dc emitter current  $\alpha_{dc} = \frac{I_C}{I_E}$
- Collector current almost equals the emitter current, the dc alpha is slightly less than 1
- dc beta β<sub>dc</sub> of a transistor ratio of the dc collector current to the dc base current

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

- dc beta is also known as the current gain because a small base current controls a much larger collector current.
- The current gain is typically 100 to 300

$$\alpha = \frac{\beta}{\beta + 1}, \qquad \beta = \frac{\alpha}{1 - \alpha}$$

# Modes of operation

| MODE           | Emitter Base<br>Junction (EBJ) | Collector Base<br>Junction (CBJ) | Applications                     |
|----------------|--------------------------------|----------------------------------|----------------------------------|
| Cut-off        | Reverse Biased                 | Reverse Biased                   | Switch                           |
| Forward Active | Forward Biased                 | Reverse Biased                   | Amplifier                        |
| Reverse Active | Reverse Biased                 | Forward Biased                   | Mostly not operated in this mode |
| Saturation     | Forward Biased                 | Forward Biased                   | Switch                           |

#### **Circuit Symbols and Conventions**

BJT circuit symbol



*npn* transistor biased in active mode



*npn* transistor will operate in active mode as long as the collector voltage does not fall below that of the base by approximately 0.4 V

 $V_{CB}$  < 0.4 V transistor leaves active mode and enters saturation mode

#### **Circuit Symbols and Conventions**

The Collector-Base Reverse Current  $(I_{CB0})$ 

- Previously, small reverse current was ignored.
  - This is carried by thermally-generated minority carriers.
- The collector-base junction current (I<sub>CBO</sub>) is the reverse current flowing from collector to base with the emitter open-circuited.
  - Usually in nanoampere range
- *I*<sub>CBO</sub> depends on temperature, approx. doubling for every 10<sup>o</sup>C rise

#### Summary of BJT current-voltage relationship

$$i_{C} = I_{S}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right)e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right)e^{v_{BE}/V_{T}}$$

*Note:* For the *pnp* transistor, replace  $v_{BE}$  with  $v_{EB}$ .

$$i_{C} = \alpha i_{E} \qquad i_{B} = (1 - \alpha)i_{E} = \frac{i_{E}}{\beta + 1}$$

$$i_{C} = \beta i_{B} \qquad i_{E} = (\beta + 1)i_{B}$$

$$\beta = \frac{\alpha}{1 - \alpha} \qquad \alpha = \frac{\beta}{\beta + 1}$$

$$V_{T} = \text{thermal voltage} = \frac{kT}{q} \approx 25 \text{ mV at room temperature}$$

#### Problem #1

A transistor has a collector current of 10 mA and a base current of 40  $\mu$ A. What is the current gain of the transistor?

**Solution** 

$$\beta_{\rm dc} = \frac{10 \text{ mA}}{40 \ \mu \text{A}} = 250$$

#### Problem #2

A transistor has a current gain of 175. If the base current is 0.1 mA, what is the collector current?

**Solution** 

$$I_C = 175(0.1 \text{ mA}) = 17.5 \text{ mA}$$

#### **BJT Configurations**

# Common-base configuration of *npn transistor*



#### Common-collector configuration of *npn* transistor











## **Transistor Characteristics**

**Common Emitter Characteristics** 

#### **Transistor Characteristics**

Common Emitter Configuration

- $V_{BB}$  source forward-biases the emitter diode with  $R_B$  as a current-limiting resistance.
- By changing  $V_{BB}$  or  $R_B$ , the base current can be changed.
- Changing the base current will change the collector current.
- The base current controls the collector current.



#### **Transistor Characteristics**

**Common Emitter Configuration** 

- Source voltage  $V_{CC}$  reverse-biases the collector diode through  $R_{C}$ .
- The collector must be positive to collect most of the free electrons injected into the base.

$$V_{CE} = V_C - V_E$$

$$V_{CB} = V_C - V_B$$

$$V_E \text{ is zero in CE connection}$$

$$V_{CE} = V_C$$

$$V_{CB} = V_C - V_B$$

$$V_{BE} = V_B$$

$$V_{BE} = V_B$$

$$V_{BE} = V_B$$

$$V_{BE} = V_E$$

#### Graphical Representation of transistor *i*-*v* Characteristics Common Emitter Characteristics



The  $i_C$ - $v_{BE}$  characteristic for an npn transistor.

#### Graphical Representation of transistor *i*-*v* Characteristics Common Emitter Characteristics



The  $i_C$ - $v_{BE}$  characteristic for an npn transistor



#### Graphical Representation of transistor *i*-*v* Characteristics

#### **Common Emitter Characteristics**



The  $i_C$ - $v_{CE}$  characteristic for an npn transistor.

#### Dependence of $i_C$ on Collector Voltage – The Early Effect

- When operated in active region, practical BJT's show some dependence of collector current on collector voltage.
- As such,  $i_C v_{CE}$  characteristic is not "straight".



V<sub>A</sub> - Early Voltage (50 – 100 V)

# Early Effect

- Early effect or base width modulation: is the variation in the width of the base due to a variation in the applied base-to-collector voltage.
- For example a greater reverse bias across the collector- base junction increases the collector-base depletion width.



# **Consequences of Early Effect**

- Reverse saturation current increases, increasing the collector current.  $I_C = I_S e^{\frac{V_{BE}}{V_T}}$
- Less chance for recombination in the base.
- Charge gradient is increased and hence the minority carriers injected inside the emitter will increase.
- For extremely large voltages, base width = 0, causing voltage breakdown in transistor resulting in punchthrough.

$$I_C = I_S e^{rac{V_{BE}}{V_T}} \left(1 + rac{V_{CE}}{V_A}
ight)$$



#### **Transistor Operating Point**





Applying KVL

 $V_{B} = I_{B}R_{B} + V_{BE}$   $I_{B} = \frac{V_{B} - V_{BE}}{R_{B}}$   $V_{CC} = I_{C}R_{C} + V_{CE}$   $I_{C} = \frac{V_{CC}}{R_{C}} - \frac{V_{CE}}{R_{C}}$ 

 $P_D = V_{CE}I_C$ 

#### DC Load Line

- In graphical analysis of nonlinear electronic circuits, a **load line** is a **line** drawn on the characteristic curve, a graph of the current vs the voltage
- It is used to determine the correct **DC** operating **point**, often called the **Q point**.



#### **Operating Point (Q-Point)**



#### **Operating Point (Q-Point)**



$$V_{CC} = I_C R_C + V_{CE}$$
$$I_C = \frac{V_{CC}}{R_C} - \frac{V_{CE}}{R_C}$$

#### Problem #3

The transistor shown below has  $\beta_{dc} = 300$ . Calculate  $I_B$ ,  $I_C$ ,  $V_{CE}$ , and  $P_D$ .



#### **Solution**

$$I_B = 9.3 \ \mu A$$
  
 $I_C = 2.79 \ m A$   
 $V_{CE} = 4.42 \ V$   
 $P_D = 12.3 \ m W$ 



#### Absolute Maximum Ratings\* T<sub>a</sub> = 25°C unless otherwise noted

| Symbol                           | Parameter                                        | Value       | Units |
|----------------------------------|--------------------------------------------------|-------------|-------|
| VCEO                             | Collector-Emitter Voltage                        | 40          | v     |
| VCBO                             | Collector-Base Voltage                           | 60          | V     |
| VEBO                             | Emitter-Base Voltage                             | 6.0         | V     |
| lc                               | Collector Current - Continuous                   | 200         | mA    |
| T <sub>J.</sub> T <sub>stg</sub> | Operating and Storage Junction Temperature Range | -55 to +150 | °C    |

\* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

#### Thermal Characteristics T<sub>a</sub> = 25°C unless otherwise noted

| Symbol           | Parameter -                                   | Max.       |            |              | Unito       |
|------------------|-----------------------------------------------|------------|------------|--------------|-------------|
|                  |                                               | 2N3904     | *MMBT3904  | **PZT3904    | Units       |
| PD               | Total Device Dissipation<br>Derate above 25°C | 625<br>5.0 | 350<br>2.8 | 1,000<br>8.0 | mW<br>mW/°C |
| R <sub>eJC</sub> | Thermal Resistance, Junction to Case          | 83.3       |            |              | °C/W        |
| R <sub>BJA</sub> | Thermal Resistance, Junction to Ambient       | 200        | 357        | 125          | °C/W        |

\* Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06".

\*\* Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm<sup>2</sup>.

/ MMBT3904 / PZT3904 NPN General Purpose Amplifier

| Symbol               | Parameter                            | Test Condition                                                                                                                                                                                                                                                                             | Min.                        | Max.         | Units  |
|----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------|
| F CHARAC             | TERISTICS                            |                                                                                                                                                                                                                                                                                            |                             |              |        |
| V(BR)CEO             | Collector-Emitter Breakdown Voltage  | I <sub>C</sub> = 1.0mA, I <sub>B</sub> = 0                                                                                                                                                                                                                                                 | 40                          |              | V      |
| V(BR)CBO             | Collector-Base Breakdown Voltage     | $I_{\rm C} = 10 \infty A, I_{\rm E} = 0$                                                                                                                                                                                                                                                   | 60                          |              | V      |
| V(BR)EBO             | Emitter-Base Breakdown Voltage       | I <sub>E</sub> = 10xA, I <sub>C</sub> = 0                                                                                                                                                                                                                                                  | 6.0                         |              | V      |
| IBL                  | Base Cutoff Current                  | V <sub>CE</sub> = 30V, V <sub>EB</sub> = 3V                                                                                                                                                                                                                                                |                             | 50           | nA     |
| ICEX                 | Collector Cutoff Current             | V <sub>CE</sub> = 30V, V <sub>EB</sub> = 3V                                                                                                                                                                                                                                                |                             | 50           | nA     |
| I CHARACT            | ERISTICS*                            |                                                                                                                                                                                                                                                                                            |                             |              |        |
| h <sub>FE</sub>      | DC Current Gain                      | $\begin{split} I_{C} &= 0.1 \text{mA}, \ V_{CE} &= 1.0 \text{V} \\ I_{C} &= 1.0 \text{mA}, \ V_{CE} &= 1.0 \text{V} \\ I_{C} &= 10 \text{mA}, \ V_{CE} &= 1.0 \text{V} \\ I_{C} &= 50 \text{mA}, \ V_{CE} &= 1.0 \text{V} \\ I_{C} &= 100 \text{mA}, \ V_{CE} &= 1.0 \text{V} \end{split}$ | 40<br>70<br>100<br>60<br>30 | 300          |        |
| V <sub>CE(sat)</sub> | Collector-Emitter Saturation Voltage | $I_{C}$ = 10mA, $I_{B}$ = 1.0mA<br>$I_{C}$ = 50mA, $I_{B}$ = 5.0mA                                                                                                                                                                                                                         |                             | 0.2<br>0.3   | V<br>V |
| V <sub>BE(sat)</sub> | Base-Emitter Saturation Voltage      | $I_{C}$ = 10mA, $I_{B}$ = 1.0mA<br>$I_{C}$ = 50mA, $I_{B}$ = 5.0mA                                                                                                                                                                                                                         | 0.65                        | 0.85<br>0.95 | v<br>v |
| IALL SIGNA           | AL CHARACTERISTICS                   |                                                                                                                                                                                                                                                                                            |                             |              |        |
| f <sub>T</sub>       | Current Gain - Bandwidth Product     | I <sub>C</sub> = 10mA, V <sub>CE</sub> = 20V,<br>f = 100MHz                                                                                                                                                                                                                                | 300                         |              | MHz    |
| Cobo                 | Output Capacitance                   | V <sub>CB</sub> = 5.0V, I <sub>E</sub> = 0,<br>f = 1.0MHz                                                                                                                                                                                                                                  |                             | 4.0          | pF     |
| C <sub>ibo</sub>     | Input Capacitance                    | V <sub>EB</sub> = 0.5V, I <sub>C</sub> = 0,<br>f = 1.0MHz                                                                                                                                                                                                                                  |                             | 8.0          | pF     |
| NF                   | Noise Figure                         | $I_{C} = 100 \propto A$ , $V_{CE} = 5.0V$ ,<br>$R_{S} = 1.0 k\Omega$ ,<br>f = 10 Hz to 15.7 kHz                                                                                                                                                                                            |                             | 5.0          | dB     |
| VITCHING C           | HARACTERISTICS                       |                                                                                                                                                                                                                                                                                            |                             |              |        |
| t <sub>d</sub>       | Delay Time                           | V <sub>CC</sub> = 3.0V, V <sub>BE</sub> = 0.5V                                                                                                                                                                                                                                             |                             | 35           | ns     |
| tr                   | Rise Time                            | I <sub>C</sub> = 10mA, I <sub>B1</sub> = 1.0mA                                                                                                                                                                                                                                             |                             | 35           | ns     |
| ts                   | Storage Time                         | V <sub>CC</sub> = 3.0V, I <sub>C</sub> = 10mA,                                                                                                                                                                                                                                             |                             | 200          | ns     |
| ÷.                   | Fall Time                            | I <sub>B1</sub> = I <sub>B2</sub> = 1.0mA                                                                                                                                                                                                                                                  |                             | 50           | ns     |

2N3904 / MMBT3904 / PZT3904 -

I.

**NPN** General Purpose Amplifier

\* Pulse Test: Pulse Width  $\leq 300 \propto$ s, Duty Cycle  $\leq 2.0\%$ 

| ON CHARACTERISTICS*  |                                      |                                                                                                                                                                                                                                                                                                                              |                             |              |        |  |
|----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------|--|
| h <sub>FE</sub>      | DC Current Gain                      | $\label{eq:loss} \begin{array}{l}  _{C} = 0.1 \text{mA}, \text{V}_{CE} = 1.0 \text{V} \\  _{C} = 1.0 \text{mA}, \text{V}_{CE} = 1.0 \text{V} \\  _{C} = 10 \text{mA}, \text{V}_{CE} = 1.0 \text{V} \\  _{C} = 50 \text{mA}, \text{V}_{CE} = 1.0 \text{V} \\  _{C} = 100 \text{mA}, \text{V}_{CE} = 1.0 \text{V} \end{array}$ | 40<br>70<br>100<br>60<br>30 | 300          |        |  |
| V <sub>CE(sat)</sub> | Collector-Emitter Saturation Voltage | I <sub>C</sub> = 10mA, I <sub>B</sub> = 1.0mA<br>I <sub>C</sub> = 50mA, I <sub>B</sub> = 5.0mA                                                                                                                                                                                                                               |                             | 0.2<br>0.3   | V<br>V |  |
| V <sub>BE(sat)</sub> | Base-Emitter Saturation Voltage      | $I_{C} = 10mA, I_{B} = 1.0mA$<br>$I_{C} = 50mA, I_{B} = 5.0mA$                                                                                                                                                                                                                                                               | 0.65                        | 0.85<br>0.95 | V<br>V |  |

## BJT as an Amplifier







Time



Voltage gain 
$$A_v \equiv \frac{dv_{CE}}{dv_{BE}}\Big|_{v_{BE}} = V_{BE}$$
  
 $v_{CE} = V_{CC} - i_C R_C$   
 $v_{CE} = V_{CC} - R_C I_S e^{v_{BE}/V_T}$ 









#### **Operation as Switch**



 $v_i$ 

$$i_{B} = \frac{v_{I} - V_{BE}}{R_{B}}$$

$$i_{C} = \beta i_{B}$$

$$v_{C} = V_{CC} - R_{C} i_{C}$$

$$I_{C(EOS)} = \frac{V_{CC} - 0.3}{R_{C}}$$

$$I_{Csat} = \frac{V_{CC} - V_{CEsat}}{R_{C}}$$

$$\beta_{forced} \equiv \frac{I_{Csat}}{I_{B}}$$

$$\beta_{forced} < \beta_{F}$$

#### **Operation as Switch**

BJT as a Switch VI = iBRB + VBE  $\frac{1}{B(EOS)} = \frac{L(EOS)}{B}$  $i_{B} = \underbrace{V_{I} - V_{BE}}_{R_{B}}$  $I_{c(sol)} = \frac{V_{cc} - V_{ce(sol)}}{P} = 0.2V$ Lc = BiB  $V_{CE} = V_{CC} - i_C R_C$ (i) VCE = VCC Cutoff  $I_{c(Eos)} = \frac{V_{cc} - V_{cE} = 0.3V}{R}$  (ii)  $V_{cE} = \frac{V_{cc}}{2}$  Arline EOS - Edge of Saturition Salution = Vce - 0.3 Rc Ic (sat) IB Overdenin factor = IB IB(E0)