
20IS603 Architecture of Intelligent Systems

Lecture #11

Object-oriented systems

Object Oriented Programming

▪ Imperative Programming Versus Declarative Programming

▪ Critical role in many knowledge-based systems, as it offers a way of

representing the things that are being reasoned about, their properties and

behaviors, and the relationships among them.

the building block of procedural languages is a function or procedure, the building block of OOP languages is an object

Object Oriented Programming

▪ Programming paradigm that relies on the concept of classes and objects.

▪ Solution to a problem is modelled as a collection of collaborating objects

▪ Fundamental building blocks

▪ Classes

▪ Objects

▪ Methods

▪ Attributes

the building block of procedural languages is a function or procedure, the building block of OOP languages is an object

Building blocks of an OOP

Classes

▪ A blueprint or template of entities

(objects) that represent the same idea or

concept

▪ Identical to the built-in types

▪ User-defined classes are called abstract

data types

▪ Definition of a class contains the class

name, its attributes, its operations and its

relationships to other classes

Building blocks of an OOP (2)

Instances

▪ Classes form templates for “the objects themselves,” - object instances.

▪ Once a class has been defined, instances of the class can be created that

have the properties defined for the class.

▪ ‘My car’ is an instance of the class of car - specifies the characteristics and

behavior of its instances.

▪ Instantiate was to make a real (data-filled) object from an abstract object

Building blocks of an OOP (3)

Objects

▪ Object means a real-world entity.

▪ Any entity that has state and behavior is an

object – physical or logical

▪ Objects are instances of classes created with

specific data

▪ Object encapsulates data and the functions

that operate on that data - data is usually

hidden from other objects

Building blocks of an OOP (4)

Attributes (or Data members)

▪ Quantities that describe instances of that class

▪ Example: pulse [amplitude, position, speed, and direction],

car [number of wheels, doors, seating capacity]

▪ Only the names and the types of the attributes need to be declared within

the class

▪ Attributes can be of any type - Amplitude and speed of type float, whereas

position and direction of type vector

▪ Class attributes (or class variables) - same for all instances of that class

▪ Instance attributes (or instance variables) - belonging to only one object.

Building blocks of an OOP (5)

Methods or Operations or Member functions

▪ A collection of statements that perform some specific task and return result

▪ Represent behaviors; perform actions; return information about an object, or

update an object’s data - Operations belonging to objects

Creation and Deletion of Instances

▪ Objects that are created must be explicitly destroyed when they are no longer

needed - release of memory when no longer required.

▪ Constructor – create new instance - a member function whose name is identical

to the class name, and used to set the initial values of some attributes.

▪ Destructor - used to release memory when an instance is deleted.

Data Abstraction
▪ Abstraction is method of hiding the implementation details

and showing only the functionality.

▪ Data abstraction and Process abstraction

▪ When the object data is not visible to the outer world, it

creates data abstraction. If needed, access to the Objects’

data is provided

▪ Data Abstraction - the process of identifying only the required

characteristics of an object ignoring the irrelevant details.

▪ The properties and behaviours of an object differentiate it

from other objects of similar type and also help in

classifying/grouping the objects

▪ It increases the readability of the code as it eliminates the

possibility of displaying the complex working of the code.

Inheritance

▪ When there are also many similarities between classes -

common information had to be specified twice - problem

can be avoided by the use of inheritance.

▪ Allows programmers to create classes that are built

upon existing classes, and this enables a class created

through inheritance to inherit the attributes and methods

of the parent class.

▪ Different Forms of Inheritance

▪ Single Inheritance

▪ Multiple Inheritance

▪ Multi-level Inheritance

▪ Hierarchical Inheritance

▪ Hybrid Inheritance

Single Inheritance

▪ A class inherits only one parent class

▪ The sub/super class relationship can be thought of as is-a-kind-of,

▪ a subclass is-a-kind-of superclass;

▪ an offspring is-a-kind-of parent;

▪ a derived class is-a-kind-of base class;

▪ a specialized class is-a-kind-of generalized class; and

▪ a specialized class inherits from a generalized class.

▪ The is-a-kind-of relationship is transitive, that is,

if x is-a-kind-of y and y is-a-kind-of z, then x is-a-kind-of z

Multiple and Repeated Inheritance

▪ Multiple inheritance - An offspring inherits from more than one parent.

▪ One class may find itself indirectly inheriting from another via more than one

route – repeated inheritance

Encapsulation

▪ Information-hiding

▪ Containing all important information inside an object,

and only exposing selected information to the outside

world.

▪ The methods and attributes are therefore private and

are said to be encapsulated within the object.

▪ The interface to each object reveals as little as

possible of the inner workings of the object.

▪ The object has control over its own data, and those

data cannot be directly altered by other objects.

Encapsulation

Four access levels:

▪ Private: access from member functions of this class only (the default);

▪ Protected: access from member functions of this class and of derived

classes;

▪ Public: access from any part of the program; and

▪ Friend: access from member functions of nominated classes.

Unified Modeling Language (UML)

▪ Provides a means of specifying the relationships between classes and instances,

and representing them diagrammatically.

▪ Specialization describes the is-a-kind-of relationship between a subclass and

superclass, and involves the inheritance of common information.

▪ Instantiation describes the relation between a class and an instance of that

class.

▪ An instance of a class and a subclass of a class are both said to be clients of

that class, since they both derive information from it, but in different ways

▪ Three other types of relationships:

▪ Aggregation

▪ Composition

▪ Association

Unified Modeling Language (UML)

▪ An aggregation relationship exists when an object can be viewed as comprising

several subobjects.
▪ Software library can be seen as an aggregation of many component modules. The degree of ownership

of the modules by the software library is rather weak, in the sense that the same module could also

belong to another software library.

▪ The composition relationship has a strong degree of ownership of the

component parts.
▪ For instance, a car comprises an engine, chassis, doors, seats, wheels, etc. – this can be recognized as

a composition relation since duplication or deletion of a car would require duplication or deletion of

these component objects.

▪ Associations are loose relationships between objects.
▪ For instance, when one object makes use of another by sending messages to it.

▪ The senders of messages are termed actors, and the recipients are servers. Objects that both send and

receive messages are sometimes termed agents

Unified Modeling Language (UML)

Dynamic (or Late) Binding

▪ Although the parent classes of objects may be known at compilation time, the

actual (derived) classes may not be.

▪ The actual class is not bound to an object name at compilation time, but

instead the binding is postponed until run-time - known as dynamic binding

▪ Dynamic Binding is the type of binding that collects all required information to

call a function during run time.

▪ The combined effect of inheritance and dynamic binding is that the same

function call can have more than one meaning, and the actual meaning is not

interpreted until run-time - this effect is known as polymorphism.

▪ The code that uses monomorphism is much longer and is likely to include

considerable duplication.

▪ Polymorphism avoids duplication and allows the commonality between

classes to be made explicit.

