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Uncertainty

▪ Lack of information to formulate a decision

▪ Result in making poor or bad decisions

▪ Dealing with uncertainty requires reasoning under 

uncertainty

▪ Deductive reasoning – deals with exact facts and 

exact conclusions

▪ Inductive reasoning – not as strong as deductive –

premises support the conclusion but do not 

guarantee it.

▪ Number of methods to pick the best solution in light 

of uncertainty.

▪ When dealing with uncertainty, have to settle for just 

a good solution.



Sources of Uncertainty

▪ Weak implications 
▪ Correlations between IF (condition) and THEN (action) parts of the rules - Vague 

associations

▪ Imprecise language
▪ Different terms are used with the same meaning or a term has multiple (different) 

meanings – imprecise data

▪ Interpreted in more than one way - ambiguity

▪ Unknown data
▪ Information is not sufficient or missing to make a decision

▪ Combination of different expert views
▪ Multiple experts have contradictory opinions and produce conflicting rules



Forms of Uncertainty

▪ Uncertainty in the rule itself
▪ rules based on heuristics will be uncertain

▪ Uncertainty in the evidence
▪ the evidence may come from a source that is not 

totally reliable

▪ Inductive arguments can never be proven correct

▪ Use of vague language
▪ imprecision in the representation language



Types of errors contributing to uncertainty



Types of errors contributing to uncertainty



Types of errors contributing to uncertainty
False positive and False negative



Classical Probability Theory
Three axioms of probability

Axiom 1:  0 ≤ P(E) ≤ 1 for any event E

Axiom 2:  ∑ P(E) = 1
Sum of all events that do not affect each other – mutually exclusive events is 1

Axiom 3: P(E1 U E2) = P(E1) + P(E2)
The probability of the union of mutually exclusive events is the sum of the 

probabilities of the individual events.



Classical Probability Theory
Three axioms of probability

Axiom 1:  0 ≤ P(E) ≤ 1 for any event E

Axiom 2:  ∑ P(E) = 1
Sum of all events that do not affect each other – mutually exclusive events is 1

Axiom 3: P(E1 U E2) = P(E1) + P(E2)
The probability of the union of mutually exclusive events is the sum of the 

probabilities of the individual events.

For pairwise independent events: 

P(A ∩ B) = P(A) P(B)

Additive law: 

P(A U B) = P(A) + P(B) - P(A∩B) 

A and B are two events which are not mutually independent



Conditional Probability 

▪ Compute the probabilities of events under certain conditions

▪ Conditional probability of A given that B has occurred

▪ States the probability that A is true, given that we already 

know that A is true

P(A|B) 



Conditional Probability

▪ Conditional probability of event A occurring given that event B has occurred 

▪ The number of times A and B can occur, or the probability that both A and B 

will occur, is called the joint probability of A and B.

▪ The number of ways B can occur is the probability of B, P(B)

Joint probability is commutative,



Bayesian Reasoning



Bayesian Rule

▪ The probability of an event based on prior knowledge of the conditions that 

might be relevant to the event

product rule



Bayesian Rule

▪ The probability of an event based on prior knowledge of the conditions that 

might be relevant to the event

P(A) - prior probability of A

“prior” that it does not take into account any information about B.

P(A|B) - posterior probability

derived from or depends upon the specified value of B

P(B|A) - Likelihood

the chance that something will happen

P(B) – prior or marginal likelihood of B 

acts as a normalizing constant 



Bayesian Rule

Given that A is true, B must either be true or false

Then, P(B|A) + P(~B|A) = 1



Bayesian Rule

The probability of ~H is given by P(~H) = 1 − P(H)

▪ P(H), the current probability of the hypothesis. If this is the first update for this hypothesis, then 

P(H) is the prior probability.

▪ P(E|H), the conditional probability that the evidence is present, given that the hypothesis is true.

▪ P(E|~H), the conditional probability that the evidence is present, given that the hypothesis is 

false.



Bayesian Updating

▪ Technique for updating probability in the light of

evidence for or against the hypothesis

▪ Updating is cumulative - if the probability of a

hypothesis has been updated in the light of one

piece of evidence, the new probability can then be

updated further by a second piece of evidence.

▪ The evidence is a symptom, and the hypothesis is

a diagnosis.

▪ P(H), P(E|H), and P(E|~H) values are needed for

all the different hypotheses and evidence covered

by the rules.

▪ Performs abduction (i.e., determining causes)

using deductive information (i.e., the likelihood of

symptoms, effects, or evidence).



Bayesian Updating

Likelihood Ratio

▪ The odds O(H) of a given hypothesis H are related to its probability P(H) by

▪ An assertion that is absolutely certain (having a probability of 1) has infinite 

odds

▪ O(H|E), the conditional odds of H given E, is



Bayesian Updating

Likelihood Ratio

dividing above equations

We know that, 

Substituting this, 

- affirms weight of evidence E

Likelihood of sufficiency



Bayesian Updating

Likelihood Ratio

Absence of evidence - denies weight D of evidence E

Likelihood of necessity

If a given piece of evidence E has an affirms weight A that is greater than 1, then its denies 

weight must be less than 1 and vice versa:

A>1 implies D<1

A<1 implies D>1

If A<1 and D>1, then the absence of evidence is supportive of a hypothesis. 



Bayesian Updating

Dealing with Uncertain Evidence

▪ Evidence is either definitely present (i.e., has a probability of 1) or definitely absent (i.e.,

has a probability of 0).

▪ If the probability of the evidence lies between these extremes, then the confidence in the

conclusion must be scaled appropriately

▪ Reasons for the evidence to be uncertain:

▪ The evidence could be an assertion generated by another uncertain rule, and which therefore has a

probability associated with it.

▪ The evidence may be in the form of data that are not totally reliable, such as the output from a sensor.

▪ Assume that E was asserted by another rule whose evidence was B, where B is certain

(has probability 1).

▪ Given the evidence B, the probability of E is P(E|B).

useful only if Bayes’ theorem is being used directly



Bayesian Updating

Dealing with Uncertain Evidence

▪ When using likelihood ratios, one technique

is to modify the affirms and denies weights

to reflect the uncertainty in E.

▪ Achieved by interpolating the weights

linearly as the probability of E varies

between 1 and 0.

▪ While P(E) is greater than 0.5, the affirms

weight is used, and when P(E) is less than

0.5, the denies weight is used.

▪ Over the range of values for P(E), A′ and D′

vary between 1 (neutral weighting) and A

and D, respectively.



Bayesian Updating

Combining Evidence

▪ Bayesian updating centered on combining several pieces of evidence that support the

same hypothesis

▪ If n pieces of evidence are found that support a hypothesis H, then the formal

restatement of the updating equation is:

▪ Usefulness of this pair of equations is doubtful since pieces of evidence which will be

available to support the hypothesis H is not known.

▪ Expressions for A covering all possible pieces of evidence Ei is written, as well as all

combinations of the pairs Ei&Ej, of the triples Ei&Ej&Ek, of quadruples Ei&Ej&Ek&Em, and

so on - unrealistic requirement when the number of possible pieces of evidence is large



Bayesian Updating

Combining Evidence

▪ The problem becomes much more manageable if it is assumed that all pieces of

evidence are statistically independent.

▪ This assumption of Bayesian updating in knowledge-based systems is rarely accurate.

▪ Statistical independence of two pieces of evidence (E1 and E2) means that the

probability of observing E1 given that E2 has been observed is identical to the probability

of observing E1 given no information about E2

▪ Statistical independence of E1 and E2 is defined as

▪ If n pieces of evidence are found that support or oppose H, then the updating equations

are



Bayesian Updating

Combining Evidence

▪ Problems arising from the interdependence of pieces of evidence can be avoided if

the rule base is properly structured.

▪ Pieces of evidence known to be dependent on each other, should not be combined

in a single rule.

▪ Instead, assertions—and the rules that generate them—should be arranged in a

hierarchy from low-level input data to high-level conclusions, with many levels of

hypotheses between - does not limit the amount of evidence considered in

reaching a conclusion, but controls the interactions between the pieces of

evidence.

▪ Inference networks are a convenient means of representing the levels of assertions

from input data through intermediate deductions to final conclusions.



Bayesian Updating

Combining Evidence

▪ All the evidence that is relevant to

particular conclusions are drawn

together in a single rule for each

conclusion - produces a shallow

network - only be reliable if there was

no dependence between the input data

▪ Deeper network with intermediate

levels between input data and

conclusions



Bayesian Rules with Production Rules

▪ Practical rule-based system - mix uncertain rules with production rules

▪ If a production rule contains multiple pieces of evidence that are independent from

each other, their combined probability can be derived from standard probability

theory

▪ Consider, a rule with conjoined pieces of independent evidence:

if <evidence E1> and <evidence E2> then <hypothesis H3>

Probability of hypothesis H3 is given by

▪ Production rules containing independent evidence that is disjoined

if <evidence E1> or <evidence E2> then <hypothesis H3>

Probability of hypothesis H3 is given by



Advantages of Bayesian Updating

▪ Based upon a proven statistical theorem.

▪ Likelihood is expressed as a probability (or odds)

▪ Requires deductive probabilities, which are generally easier to estimate than

abductive ones. The user supplies values for the probability of evidence (the

symptoms) given a hypothesis (the cause), rather than the reverse.

▪ Likelihood ratios and prior probabilities can be replaced by sensible guesses.

▪ Evidence for and against a hypothesis (or the presence and absence of

evidence) can be combined in a single rule by using affirms and denies

weights.

▪ Linear interpolation of the likelihood ratios can be used to take account of any

uncertainty in the evidence.

▪ The probability of a hypothesis can be updated in response to more than one

piece of evidence.



Disadvantages of Bayesian Updating

▪ Prior probability of an assertion must be known or guessed at.

▪ Conditional probabilities must be measured or estimated or, failing those, guesses

must be taken at suitable likelihood ratios.

▪ The single probability value for the truth of an assertion tells us nothing about its

precision.

▪ The addition of a new rule that asserts a new hypothesis often requires alterations

to the prior probabilities and weightings of several other rules.

▪ The assumption that pieces of evidence are independent is often unfounded. The

only alternatives are to calculate affirms and denies weights for all possible

combinations of dependent evidence, or to restructure the rule base so as to

minimize these interactions.

▪ The linear interpolation technique for dealing with uncertain evidence is not

mathematically justified

▪ Representations based on odds, as required to make use of likelihood ratios,

cannot handle absolute truth, that is, odds = ∞



Example #1

▪ Control of a power station boiler

List out the hypothesis H 

and evidence E.



Example #1

▪ Probability values



Example #1

▪ New rules



Example #1

▪ set of input data



Example #1

Final Conclusion


