19EEE114 Electronic Circuits
 SOLUTION

Assignment \#1
Q1. Find the values of I and V in the circuits shown below. Assume diodes to be ideal.

[Ans: (a) $0 \mathrm{~mA}, 5 \mathrm{~V}$; (b) $2 \mathrm{~mA}, 0 \mathrm{~V}$; (c) $4 \mathrm{~mA},-5 \mathrm{~V}$]
Q2. For the circuits shown using ideal diodes find the values of voltage and current.

[Ans: (a) - 3V, 0.6mA; (b) 3V, 0 mA ; (c) $3 \mathrm{~V}, 0.6 \mathrm{~mA}$; (d) - $3 \mathrm{~V}, 0 \mathrm{~mA}$]
Q3. Determine I and V. Assume diodes to be ideal.

[Ans: (a) $1 \mathrm{~mA}, 2 \mathrm{~V}$; (b) $4 \mathrm{~mA}, 1 \mathrm{~V}$; (c) $3 \mathrm{~V}, 3 \mathrm{~mA}$]
Q4. Consider a silicon diode with $\eta=1.5$. Find the change in voltage if the current changes from 0.1 mA to 10 mA .
[Ans: 172.5 mV]
Q5. A silicon junction diode with $\eta=1$ has $v=0.7 \mathrm{~V}$ at $\mathrm{i}=1 \mathrm{~mA}$. Find the voltage drop at $\mathrm{i}=0.1 \mathrm{~mA}$.
[Ans: 0.64]
Q6. Find the value of the diode small-signal resistance r_{d} at bias current of 10 mA . Assume $\eta=1$.
[Ans: 2.5Ω]

19EEE114 Electronic Circuits
 SOLUTION

Assignment \#1
Q7. Determine Io and V_{0} for the following circuit.
(a)

Sol:
Diode forward-biased,

$$
\begin{aligned}
& I_{D}=\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=\mathbf{1 . 2 4} \mathbf{~ m A} \\
& V_{o}=V_{4.7 \mathrm{k} \Omega+V_{D}=(1.24 \mathrm{~mA})(4.7 \mathrm{k} \Omega)+0.7 \mathrm{~V}} \\
&=\mathbf{6 . 5 3} \mathbf{V}
\end{aligned}
$$

(b)

Sol:
Diode forward-biased

$$
\begin{aligned}
I_{D} & =\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}=6.26 \mathrm{~mA} \\
V_{o} & =I_{D}(1.2 \mathrm{k} \Omega) \\
& =(6.26 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =7.51 \mathrm{~V}
\end{aligned}
$$

(c)

Sol:
Right diode forward-biased:

$$
\begin{aligned}
& I_{D}=\frac{15 \mathrm{~V}+5 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{8 . 7 7} \mathbf{~ m A} \\
& V_{o}=15 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 4 . 3} \mathrm{V}
\end{aligned}
$$

Q8. A silicon diode is used in the circuit as shown. Calculate the diode current.

Sol:
$\mathrm{V}=\mathrm{ID}_{\mathrm{D}} \mathrm{C}+\mathrm{V}_{\mathrm{D}}=>\mathrm{ID}_{\mathrm{D}}=(15-0.7) / 4.7=3.04 \mathrm{~mA}$

Q9. Determine the current I_{D} and the diode voltage V_{D} for the circuit shown with $V_{D D}=5 \mathrm{~V}$ and $R=1 \mathrm{k} \Omega$. Assume that the diode has a current of 1 mA at a voltage of 0.7 V .

Sol:
assume that $V_{D}=0.7 \mathrm{~V}$

$$
\begin{gathered}
I_{D}=\frac{V_{D D}-V_{D}}{R}=\frac{5-0.7}{1}=4.3 \mathrm{~mA} \\
V_{2}-V_{1}=2.3 V_{T} \log \frac{I_{2}}{I_{1}} \\
V_{2}=V_{1}+0.06 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

Substituting $V_{1}=0.7 \mathrm{~V}, I_{1}=1 \mathrm{~mA}$, and $I_{2}=4.3 \mathrm{~mA}$
results in $V_{2}=0.738 \mathrm{~V}$.

