19EEE114 Electronic Circuits

Assignment \#2

SOLUTION

Q1. Find the average value of the full-wave rectified voltage shown below.

Solution:

$$
\mathrm{V}_{\text {avg }}=2 \mathrm{~V}_{\mathrm{m}} / \pi=(2 \times 100) / \pi=63.69 \mathrm{~V}
$$

Q2. A diode with $V_{F}=0.7 \mathrm{~V}$ is connected as a half-wave rectifier. The load resistance is 470Ω and the ac input is 12 V from the secondary of transformer. Determine the peak output voltage, peak load current and the diode peak reverse voltage.
Solution:

$$
\begin{aligned}
& \text { Vin }=1.414 \times 12=16.968 \mathrm{~V} \\
& \text { Vout }=V \mathrm{Vin}-\mathrm{V}=16.968-0.7=16.268 \mathrm{~V} \\
& \mathrm{I}=16.268 / 470=34.61 \mathrm{~mA} \\
& \text { PIV }=\text { Vpeak }=16.968 \mathrm{~V}
\end{aligned}
$$

Q3. Determine the output waveform of the following circuits for the given input signals.
(a)

(b)

Sol:

(c)

Sol:

(d)

Sol:

19EEE114 Electronic Circuits

(e)

(f)

Sol:

Q4. For a certain Z ener diode, $\mathrm{V}_{\mathrm{z}}=10 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{z}}=30 \mathrm{~mA}$. If $\mathrm{Z}_{\mathrm{z}}=8 \Omega$, what is the terminal voltage at $\mathrm{I}_{\mathrm{z}}=50 \mathrm{~mA}$?
Sol:

$$
V_{z}=10 \mathrm{~V}+(20 \mathrm{~mA})(8)=10.16 \mathrm{~V}
$$

Q5. A Zener regulator has an input voltage that may vary from 22 to 30 V . If the regulated output voltage is 12 V and the load resistance varies from 140Ω to $10 \mathrm{k} \Omega$, what is the maximum allowable series resistance?
Sol:

$$
\begin{aligned}
R_{S(\text { max })} & =\left(\frac{V_{S \text { min) }}}{V_{Z}}-1\right) R_{L(\text { min })} \\
R_{S(\text { max })} & =(22 / 12-1) \times 140=117 \Omega
\end{aligned}
$$

As long as the series resistance is less than 117Ω, the zener regulator will work properly under all operating conditions.

Q6. A Zener regulator has an input voltage ranging from 15 to 20 V and a load current ranging from 5 to 20 mA . If the Zener voltage is 6.8 V , what is the maximum allowable series resistance?
Sol:

$$
\begin{aligned}
& R_{S(\text { max })}=\frac{V_{S(\text { min })}-V_{Z}}{I_{L(\text { max })}} \\
& \mathrm{R}_{\mathrm{S}(\text { max })}=(15-6.8) / 20 \mathrm{~mA}=410 \Omega
\end{aligned}
$$

If the series resistance is less than 410Ω, the zener regulator will work properly under all conditions.
Q7. A Zener diode whose nominal voltage is 10 V at 10 mA has an incremental resistance of 50Ω.
a) What is the value of $\mathrm{V}_{z 0}$ in the Zener model?
b) What voltage do you expect if the diode current is doubled?

Sol:
$\mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{z} 0}+\mathrm{I}_{\mathrm{zr}}$ $10=V_{z 0}+50 \Omega \times 10 \mathrm{~mA}$
a) $\mathrm{V}_{z 0}=9.5 \mathrm{~V}$
$\mathrm{Iz}=20 \mathrm{~mA} \Rightarrow \mathrm{Vz}_{2}=9.5+20 \mathrm{~mA} \times 50=10.5 \mathrm{~V}$
b) $\mathrm{V}_{\mathrm{z}}=10.5 \mathrm{~V}$

