Assignment #2

## 19EEE114 Electronic Circuits SOLUTION

**Q1.** Find the average value of the full-wave rectified voltage shown below.



## Solution:

 $V_{avg} = 2V_m/\pi = (2x100)/\pi = 63.69 V$ 

**Q2.** A diode with  $V_F = 0.7$  V is connected as a half-wave rectifier. The load resistance is 470  $\Omega$  and the ac input is 12 V from the secondary of transformer. Determine the peak output voltage, peak load current and the diode peak reverse voltage.

## Solution:

 $\label{eq:Vin} \begin{array}{l} \mbox{Vin} = 1.414 \ x \ 12 = 16.968 \ V \\ \mbox{Vout} = \mbox{Vin} - \mbox{V}_{F} = 16.968 - 0.7 = 16.268 \ V \\ \mbox{I} = 16.268/470 = 34.61 \ mA \\ \mbox{PIV} = \mbox{Vpeak} = 16.968 \ V \end{array}$ 

Q3. Determine the output waveform of the following circuits for the given input signals.

(a)











Sol:



## 19EEE114 Electronic Circuits SOLUTION

Assignment #2



**Q4.** For a certain Zener diode,  $V_Z = 10$  V at  $I_{ZT} = 30$ mA. If  $Z_Z = 8\Omega$ , what is the terminal voltage at  $I_Z = 50$ mA? **Sol:** 

**Q5.** A Zener regulator has an input voltage that may vary from 22 to 30 V. If the regulated output voltage is 12V and the load resistance varies from 140  $\Omega$  to 10 k $\Omega$ , what is the maximum allowable series resistance?

Sol:

$$R_{S(\text{max})} = \left(\frac{V_{S(\text{min})}}{V_Z} - 1\right) R_{L(\text{min})}$$
  
R<sub>S(max)</sub> = (22/12 - 1)x140 = 117 Ω

As long as the series resistance is less than 117  $\Omega$ , the zener regulator will work properly under all operating conditions.

**Q6.** A Zener regulator has an input voltage ranging from 15 to 20 V and a load current ranging from 5 to 20 mA. If the Zener voltage is 6.8 V, what is the maximum allowable series resistance?

$$R_{S(\max)} = \frac{V_{S(\min)} - V_Z}{I_{L(\max)}}$$

 $R_{S(max)} = (15 - 6.8)/20 \text{ mA} = 410 \Omega$ 

If the series resistance is less than 410  $\Omega$ , the zener regulator will work properly under all conditions.

**Q7.** A Zener diode whose nominal voltage is 10 V at 10 mA has an incremental resistance of 50 Ω.

a) What is the value of V<sub>Z0</sub> in the Zener model?

b) What voltage do you expect if the diode current is doubled?

Sol:

 $V_{z} = V_{z0} + I_{z}r_{z}$ 10 = V<sub>z0</sub> + 50  $\Omega$  x 10 mA a) V<sub>z0</sub> = 9.5 V Iz = 20 mA => Vz = 9.5 + 20 mA x 50 = 10.5 V b) Vz = 10.5 V