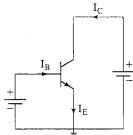
19ELC101 Electrical & Electronic Circuits SOLUTION

Assignment #6

Due Date: 15th April 2022

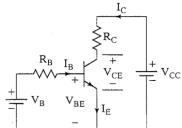

Q1. A transistor has a current gain of 175. If the base current is 0.1 mA, what is the collector current?

[Ans: $I_C = 17.5 \text{ mA}$]

- **Q2.** A transistor has a collector current of 10 mA and a base current of 40 μ A. What is the current gain of the transistor? **[Ans:** β **= 250]**
- **Q3.** Consider an npn transistor with $v_{BE} = 0.7 \text{ V}$ at $i_C = 1 \text{ mA}$. Find v_{BE} at $i_C = 0.1 \text{ mA}$ and 10 mA.

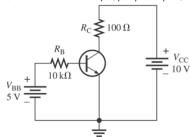
[Ans. 0.64 V; 0.76 V]

- **Q4.** Transistors of a certain type are specified to have β values in the range 50 to 150. Find the range of their α values. **[Ans: 0.980 to 0.993]**
- **Q5.** A transistor is connected as shown in figure and has a base current of 16µA and a beta of 80. What is the collector current and emitter current of the transistor?



[Ans: $Ic = 1.28 \text{ mA}, I_E = 1.296 \text{ mA}]$

Q6. Measurement of an *npn* BJT in a particular circuit shows the base current to be 14.46 μ A, emitter current to be 1.460 mA, and the base-emitter voltage to be 0.7 V. Calculate α , β , and I_S .


[Ans: $\alpha = 0.99$, $\beta = 100$, $I_S = 10^{-15}$ A]

Q7. For the circuit shown below with R_B = 100k Ω , R_C = 2k Ω , V_B = 3V, V_{CC} = 9V and β =120, determine the collector current and V_{CE} .

[Ans: $I_B = 23\mu A$, $I_C = 2.76 \text{ mA}$, $V_{CE} = 3.48 \text{ V}$]

Q8. Determine I_B, I_C, I_E, V_{BE}, V_{CE}, and V_{CB} in the circuit. Assume $\beta_{DC} = 150$.

Solution:

$$\begin{split} V_{\rm BE} &= 0.7 \, {\rm V} \\ I_{\rm B} &= \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 - 0.7}{10 \, {\rm k}\Omega} = 430 \, \, \mu {\rm A} \\ I_{\rm C} &= \beta_{\rm DC} I_{\rm B} = 150 * 430 \, \, \mu A = 64.5 mA \\ I_{\rm E} &= I_{\rm C} + I_{\rm B} = 64.5 mA + 430 \, \, \mu A = 64.9 mA \\ V_{\rm CE} &= V_{\rm CC} - I_{\rm C} R_{\rm C} = 10 - \left(64.5 mA * 100\Omega\right) = 3.55 V \\ V_{\rm CB} &= V_{\rm CE} - V_{\rm BE} = 3.55 V - 0.7 V = 2.85 V \\ *V_{\rm EE} &= 0.7 V \, , {\rm forward \, bias} \\ V_{\rm CB} &= V_{\rm C} - V_{\rm B} = 2.85 V \, , {\rm reverse \, bias} \end{split} \right\} {\rm Mode \, \, active} \end{split}$$