Q1. The Transistor in the circuit below has a very high β, Find V_{E} and V_{C} for $V_{B}=+2.0 \mathrm{~V}$.

Q2. For the circuit below let $V_{C C}=10 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega$, and $R_{B}=10 \mathrm{k} \Omega$. The bipolar junction transistor has $\beta=50$. Find the values of $V_{B B}$ that results in the transistor operating
(a) in the active mode with $V_{C}=2 \mathrm{~V}$;
(b) at the edge of saturation;
(c) deep in saturation with β forced $=10$.

Assume $V_{B E} \approx 0.7 \mathrm{~V}$.

Q3. Consider the operation of the circuit shown below for V_{B} at $-1 \mathrm{~V}, 0 \mathrm{~V}$, and +1 V . Assume that β is very high. What values of V_{E} and V_{C} result? What is the mode of operation of transistor in each case.

Q4. For the circuit shown below, assume that the transistor has very large β. Find the values of the labeled voltages and current.

Q5. For the circuit shown, design a value for R_{B} so that the transistor saturates with an overdrive factor of 10 . The BJT is specified to have a minimum β of 20 and $V_{\text {CEsat }}=0.2 \mathrm{~V}$. What is the value of forced β achieved?

Q6. For the circuit shown, $\mathrm{V}_{\mathrm{B}}=-1.5 \mathrm{~V}$. Assuming $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, calculate $\mathrm{V}_{\mathrm{E}}, \alpha, \beta$ and V_{C}.

Q7. A transistor with $\beta=120$ is biased to operate at a DC collector current of 1.2 mA . Find the values of $\mathrm{gm}, \mathrm{r} \pi$, and re .

Q8. Find the collector voltage in the circuit shown below. Also, calculate forced β for the transistor. Assume the transistor is operating in saturation.

Q9. Consider the circuit shown below. Find the emitter, base and collector voltages and currents. Use $\beta=50$, but assume $\left|\mathrm{V}_{\mathrm{BE}}\right|=0.8 \mathrm{~V}$ independent of current level.

Q10. For the circuit shown below, find V_{B}, V_{E} and V_{C} for $R_{B}=100 \Omega k$. Let $\beta=100$.

Due on: $4^{\text {th }}$ May 2022
Q11. (a) For the transistor circuit shown, what is V_{CE} when $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$?
(b) What minimum value of I_{B} is required to saturate this transistor if $\beta_{D C}$ is 200 ? Neglect
$V_{C E(\text { sat) }}$.
(c) Calculate the maximum value of R_{B} when $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.

Q12. Determine the voltage at all nodes and current through the branches. Assume $\beta=100$.

Q13. Determine the voltage at all nodes and current through the branches. Assume $\beta=100$.

