19EEE114 Electronic Circuits

Assignment #4

Due on: 4th May 2022

Q1. The Transistor in the circuit below has a very high β , Find V_E and V_C for V_B = +2.0V.

V

- Q2. For the circuit below let $V_{CC} = 10 \text{ V}$, $R_C = 1 \text{ k}\Omega$, and $R_B = 10 \text{ k}\Omega$. The bipolar junction transistor has $\beta = 50$. Find the values of V_{BB} that results in the transistor operating
 - (a) in the active mode with $V_c = 2 V$;
 - (b) at the edge of saturation;
 - (c) deep in saturation with β forced = 10. Assume $V_{BE} \approx 0.7$ V.

Q3. Consider the operation of the circuit shown below for V_B at -1 V, 0 V, and +1 V. Assume that β is very high. What values of V_E and V_C result? What is the mode of operation of transistor in each case.

Q4. For the circuit shown below, assume that the transistor has very large β . Find the values of the labeled voltages and current.

Q5. For the circuit shown, design a value for R_B so that the transistor saturates with an overdrive factor of 10. The BJT is specified to have a minimum β of 20 and V_{CEsat} = 0.2 V. What is the value of forced β achieved?

Q6. For the circuit shown, V_B = -1.5 V. Assuming V_{BE} = 0.7 V, calculate V_E , α , β and V_C .

Q7. A transistor with β = 120 is biased to operate at a DC collector current of 1.2mA. Find the values of gm, $r\pi$, and re. Assignment #4

Q8. Find the collector voltage in the circuit shown below. Also, calculate forced β for the transistor. Assume the transistor is operating in saturation.

Q9. Consider the circuit shown below. Find the emitter, base and collector voltages and currents. Use β =50, but assume $|V_{BE}| = 0.8$ V independent of current level.

Q10. For the circuit shown below, find V_B, V_E and V_C for R_B = 100 Ω k. Let β =100.

Q11. (a) For the transistor circuit shown, what is V_{CE} when V_{IN} = 0 V?

(b) What minimum value of I_B is required to saturate this transistor if β_{DC} is 200? Neglect $V_{CE(sat)}$.

(c) Calculate the maximum value of R_B when $V_{IN} = 5 V$.

Q12. Determine the voltage at all nodes and current through the branches. Assume β =100.

Q13. Determine the voltage at all nodes and current through the branches. Assume β =100.

