Assignment #4

Q1. The Transistor in the circuit below has a very	
high β , Find V _E and V _C for V _B = +2.0V. +3 V	
$V_B \qquad \qquad$	Solution: $V_{BE} = V_B - V_E$ $V_E = V_B - V_{BE} = 2 - 0.7 = 1.3 V$ $I_E = V_E/R_E = 1.3 mA$ Transistor has high β , => $I_C \simeq I_E = 1.3 mA$ $V_C = V_{CC} - I_C R_C = 3 - 1.3 = 1.7 V$
Q2. For the circuit below let $V_{CC} = 10 \text{ V}$, $R_C = 1k\Omega$, and $R_B = 10 \text{ k}\Omega$. The bipolar junction transistor has $\beta = 50$. Find the values of V_{BB} that results in the transistor operating (a) in the active mode with $V_C = 2 \text{ V}$; (b) at the edge of saturation; (c) deep in saturation with β forced = 10. Assume $V_{BE} \approx 0.7 \text{ V}$.	Solution: (a) $I_C = (V_{CC} - V_C) / R_C = (10-2)/1 = 8 \text{ mA}$ $I_B = I_C / \beta = 0.16 \text{ mA}$ $V_{BB} = V_B + I_B R_B = 2.3 \text{ V}$ $V_C > V_B$, therefore active mode (b) at edge of saturation, $V_{CE} = 0.3 \text{ V}$ $V_E = 0 \text{ V} = \text{ V}_C = 0.3 \text{ V}$ $I_C = 9.7 \text{ mA}$ $I_B = 9.7 / 50 = 0.194 \text{ mA}$ $V_{BB} = 2.64 \text{ V}$ (c) in deep saturation $V_{CE} = 0.2 \text{ V}$ $V_E = 0 \text{ V} = \text{ V}_C = 0.2 \text{ V}$ $I_C = 9.8 \text{ mA}$ $I_B = I_C / \beta_{forced} = 9.8 / 10 = 0.98 \text{ mA}$ $V_{BB} = 10.5 \text{ V}$
Q3. Consider the operation of the circuit shown below for V_B at -1 V, 0 V, and +1 V. Assume that β is very high. What values of V_E and V_C result? What is the mode of operation of transistor in each case. +3 V $V_B \circ V_C$ $V_B \circ V_E$ 1 k Ω $V_B \circ V_E$	Solution: (a) $V_B = -1 V$, $V_E = -1 - 0.7 = -1.7 V$ $I_C = I_E = (-1.7 - (-3))/1 = 1.3 mA$ $V_C = 3 - 1.3 = 1.7 V$ $V_C > V_B$, therefore active region (b) $V_B = 0 V$, $V_E = -0.7 V$ $I_C = I_E = (-0.7 - (-3))/1 = 2.3 mA$ $V_C = 3 - 2.3 = 0.7 V$ $V_C > V_B$, therefore active region (c) $V_B = 1 V$, $V_E = 1 - 0.7 = 0.3V$ $I_C = I_E = 0.3 - (-3)/1 = 3.3 mA$ $V_C = 3 - 3.3 = -0.7 V$ $V_C < V_B$, therefore saturation region Not in active mode, so $I_C \# I_E$, $V_C = V_E + V_{CE} = 0.5V$

19EEE114 Electronic Circuits

Assignment #4	SOLUTION Due on: 4 th May 2022
Q4. For the circuit shown below, assume that the	Solution:
the labeled voltages and current.	Equating the collector and emitter currents:
+ 10 V	$I_C = I_E$
10 kΩ 10 kΩ	$\frac{10 - V_c}{15} = \frac{(V_c - 0.7) - (-10)}{5} \rightarrow 10 - V_c = 3V_c + 27.9$
vvv ore	$4V_c = -17.9$
+	$V_c = -4.475 \text{ V}.$
0.7 V _	$I_{c} = \frac{10 - (-4.475)}{10} = 0.965 \text{ mA} = I_{F}$
$I_{\rm E} \bigvee \begin{cases} 5 \ k\Omega \end{cases}$	15
- 10 V	$I_{c} = I_{E} = 0.965 \text{ mA}$
Q5. For the circuit shown, design a value for R_B	Solution:
so that the transistor saturates with an overdrive factor of 10. The BJT is specified to have a minimum 6 of 20 and V = 0.2 V. What is	$I_{C(sat)} = \frac{5 - 0.2}{1} = 4.8 \text{ mA}$
the value of forced β achieved?	$I_{B(EOS)} = \frac{I_{C(sat)}}{\beta_{\min}} = \frac{4.8}{20} = 0.24 \text{ mA}$
μ ξ 1 κΩ	$I_B = I_{B(EOS)} \times ODF = 2.4 \text{ mA}$
	$I_{B} = \frac{5 - 0.7}{R_{B}} \rightarrow R_{B} = \frac{4.3}{2.4} = 1.792 \text{ k}\Omega$
	$\beta_{forced} = \frac{I_{C(sat)}}{I_{B}} = \frac{4.8 \text{ mA}}{2.4 \text{ mA}} = 2;$ $\beta_{forced} = 2$
Q6. For the circuit shown, $V_B = -1.5$ V. Assuming	Solution:
V_{BE} = 0.7 V, calculate V _E , α, β and V _C . +9 V	$I_B = \frac{0 - (-1.5)}{10} = 0.15 \text{ mA}$
Š 101⊧0	$V_{\rm T} = V_{\rm P} - 0.7 = -1.5 - 0.7 = -2.2 \text{ V}$
V_c	$V_{L}(0) = 2210.68$
	$I_E = \frac{V_E - (-9)}{10} = \frac{-2.2 + 9}{10} = \frac{6.8}{10} = 0.68 \text{ mA}$
	$I_c = I_E - I_B = 0.68 - 0.15 = 0.53 \text{ mA}$
$10 \mathrm{k}\Omega$	$V_c = 9 - 0.53 \times 10 = 3.7 \text{ V}$
$=$ $\xi_{10 k\Omega}$	$V_{BC} = -1.5 - 3.7 = -5.2 \text{ V} \le 0.4 \text{ V}$
	which means the transistor is in the active mode.
−9 V	$\beta = \frac{I_C}{I_B} = \frac{0.53}{0.15} = 3.5333$
	$\alpha = \frac{\beta}{\beta + 1} = \frac{3.5333}{4.5333} = 0.7794 = \frac{I_c}{I_E}$
	Solution:
Q7. A transistor with β = 120 is biased to operate at a DC collector current of 1.2mA. Find the values of gm, r π , and re.	$g_m = \frac{I_C}{V_T} = \frac{1.2}{25} = 0.048 \Omega^{-1}$

Assignment #4	Electronic Circuits COLUTION Due on: 4 th May 2022
	$r_{\pi} = \frac{\beta}{g_m} = \frac{120}{0.048} = 2500 \Omega$ $r_e = \frac{\alpha}{g_m} = \frac{\beta}{\beta + 1} \frac{1}{g_m} = \frac{120}{121} \frac{1}{0.048} = 20.7 \Omega$
Q8. Find the collector voltage in the circuit shown below. Also, calculate forced β for the transistor. Assume the transistor is operating in saturation.	Solution: $\beta_{\text{forced}} = \frac{I_C}{I_B}$ $= \frac{\frac{V_{CC} - V_C}{R_C}}{\frac{V_{CC} - V_C - V_{BC}}{R_B}}$ $= \frac{\frac{10 - 1.46}{10}}{\frac{10 - 1.46 - 0.5}{20}} = 2.12$
Q9. Consider the circuit shown below. Find the emitter, base and collector voltages and currents. Use β =50, but assume V _{BE} = 0.8 V independent of current level. +3 V 2.2 kΩ = 2.2 kΩ -3 V	Solution: Assuming the transistor is in active mode: $V_E = -0.8 \rightarrow I_E = \frac{-0.8 - (-3)}{2.2} = \frac{2.2}{2.2} = 1 \text{ mA}$ $I_B = \frac{I_E}{\beta + 1} = \frac{1}{51} = 19.61 \times 10^{-3} \text{ mA}$ $I_C = \beta I_B = 50 \times 33.78 \times 10^{-3} = 0.980 \text{ mA}$ $V_B = 0$ $V_C = 3 - 2.2 \times 0.980 = 0.844 \text{ V}.$ $V_{BC} = 0 - (0.844) = -0.844 \le 0.4 \rightarrow \text{ the CBJ is}$ reverse-biased \rightarrow the transistor is in active mode as assumed!
Q10. For the circuit shown below, find V _B , V _E and V _C for R _B = 100Ωk. Let β=100. +5 V R_B R_B V_C V_C V_C V_C V_C V_C V_C V_C V_C V_C V_C	Solution: $R_{B} = 100 \text{ k}\Omega$ Assuming the transistor is in active mode: $(\beta + 1)I_{B} = I_{E}$ $101 \times \frac{5 - (0.7 + V_{E})}{100} = \frac{V_{E}}{1} \rightarrow 4.3 - V_{E} = \frac{100}{101}V_{E}$ $\rightarrow V_{E} = 2.16 \text{ V} \rightarrow I_{E} = \frac{2.16}{1} = 2.16 \text{ mA}$ $V_{B} = V_{E} + 0.7 = 2.16 + 0.7 = 2.86 \text{ V}$ $V_{C} = 5 - 1 \times I_{C} = 5 - (\frac{100}{101}) \times I_{E} = 2.86 \text{ V}$ $V_{BC} = V_{B} - V_{C} = 0 \leq 0.4 \text{ V}$ the BJT is in active mode as assumed.

Department of Electrical & Electronics Engineering, Amrita Vishwa Vidyapeetham, Coimbatore.

