Q1. The Transistor in the circuit below has a very high β, Find V_{E} and V_{C} for $V_{B}=+2.0 V$.

Q2. For the circuit below let $V_{C C}=10 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega$, and $R_{B}=10 \mathrm{k} \Omega$. The bipolar junction transistor has $\beta=50$. Find the values of $V_{B B}$ that results in the transistor operating
(a) in the active mode with $V_{C}=2 \mathrm{~V}$;
(b) at the edge of saturation;
(c) deep in saturation with β forced $=10$.

Assume $V_{B E} \approx 0.7 \mathrm{~V}$.

Q3. Consider the operation of the circuit shown below for V_{B} at $-1 \mathrm{~V}, 0 \mathrm{~V}$, and +1 V . Assume that β is very high. What values of V_{E} and V_{C} result? What is the mode of operation of transistor in each case.

Solution:
$V_{B E}=V_{B}-V_{E}$
$V_{E}=V_{B}-V_{B E}=2-0.7=1.3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}=1.3 \mathrm{~mA}$
Transistor has high $\beta,=>I_{C} \simeq I_{E}=1.3 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=3-1.3=1.7 \mathrm{~V}$

Solution:

(a) $I_{C}=\left(V_{C C}-V_{C}\right) / R_{C}=(10-2) / 1=8 \mathrm{~mA}$

$$
\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} / \beta=0.16 \mathrm{~mA}
$$

$V_{B B}=V_{B}+I_{B} R_{B}=2.3 \mathrm{~V}$
$V_{C}>V_{B}$, therefore active mode
(b) at edge of saturation, $\mathrm{V}_{\mathrm{CE}}=0.3 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}=>\mathrm{V}_{\mathrm{C}}=0.3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=9.7 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{B}}=9.7 / 50=0.194 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{BB}}=2.64 \mathrm{~V}
\end{aligned}
$$

(c) in deep saturation $\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}=>\mathrm{V}_{\mathrm{C}}=0.2 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=9.8 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} / \beta_{\text {forced }}=9.8 / 10=0.98 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{BB}}=10.5 \mathrm{~V}
\end{aligned}
$$

Solution:

(a) $V_{B}=-1 \mathrm{~V}, V_{E}=-1-0.7=-1.7 \mathrm{~V}$
$I_{C}=I_{E}=(-1.7-(-3)) / 1=1.3 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{C}}=3-1.3=1.7 \mathrm{~V}$
$V_{C}>V_{B}$, therefore active region
(b) $V_{B}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=-0.7 \mathrm{~V}$
$I_{C}=I_{E}=(-0.7-(-3)) / 1=2.3 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{C}}=3-2.3=0.7 \mathrm{~V}$
$V_{C}>V_{B}$, therefore active region
(c) $V_{B}=1 \mathrm{~V}, V_{E}=1-0.7=0.3 \mathrm{~V}$
$\left.I_{C}=I_{E}=0.3-(-3)\right) / 1=3.3 \mathrm{~mA}$
$V_{C}=3-3.3=-0.7 \mathrm{~V}$
$V_{C}<V_{B}$, therefore saturation region
Not in active mode, so $I_{C} \# I_{E}, V_{C}=V_{E}+V_{C E}=0.5 \mathrm{~V}$

Q4. For the circuit shown below, assume that the transistor has very large β. Find the values of the labeled voltages and current.	Solution: Equating the collector and emitter currents: $\begin{aligned} & I_{C}=I_{E} \\ & \frac{10-V_{C}}{15}=\frac{\left(V_{C}-0.7\right)-(-10)}{5} \rightarrow 10-V_{\mathrm{C}}=3 V_{\mathrm{C}}+27.9 \\ & 4 V_{\mathrm{C}}=-17.9 \\ & V_{\mathrm{C}}=-4.475 \mathrm{~V} . \\ & I_{C}=\frac{10-(-4.475)}{15}=0.965 \mathrm{~mA}=I_{E} \\ & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}=0.965 \mathrm{~mA} \end{aligned}$
Q5. For the circuit shown, design a value for R_{B} so that the transistor saturates with an overdrive factor of 10 . The BJT is specified to have a minimum β of 20 and $\mathrm{V}_{\text {CEsat }}=0.2 \mathrm{~V}$. What is the value of forced β achieved?	Solution: $\begin{aligned} & I_{C(\text { sat })}=\frac{5-0.2}{1}=4.8 \mathrm{~mA} \\ & I_{B(\text { EOS })}=\frac{I_{C(\text { tat })}}{\beta_{\min }}=\frac{4.8}{20}=0.24 \mathrm{~mA} \\ & I_{B}=I_{B(E O S)} \times O D F=2.4 \mathrm{~mA} \\ & I_{B}=\frac{5-0.7}{R_{B}} \rightarrow R_{B}=\frac{4.3}{2.4}=1.792 \mathrm{k} \Omega \\ & \beta_{\text {forced }}=\frac{I_{C(\text { (ast })}}{I_{B}}=\frac{4.8 \mathrm{~mA}}{2.4 \mathrm{~mA}}=2 ; \end{aligned}$ $\beta_{\text {forced }}=2$
Q6. For the circuit shown, $\mathrm{V}_{\mathrm{B}}=-1.5 \mathrm{~V}$. Assuming $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, calculate $\mathrm{V}_{\mathrm{E}}, \mathrm{a}, \beta$ and V_{C}.	Solution: $\begin{aligned} & I_{B}=\frac{0-(-1.5)}{10}=0.15 \mathrm{~mA} \\ & V_{E}=V_{B}-0.7=-1.5-0.7=-2.2 \mathrm{~V} \\ & I_{E}=\frac{V_{E}-(-9)}{10}=\frac{-2.2+9}{10}=\frac{6.8}{10}=0.68 \mathrm{~mA} \\ & I_{C}=I_{E}-I_{B}=0.68-0.15=0.53 \mathrm{~mA} \\ & V_{C}=9-0.53 \times 10=3.7 \mathrm{~V} \\ & V_{B C}=-1.5-3.7=-5.2 \mathrm{~V} \leq 0.4 \mathrm{~V} \end{aligned}$ which means the transistor is in the active mode. $\begin{aligned} & \beta=\frac{I_{C}}{I_{B}}=\frac{0.53}{0.15}=3.5333 \\ & \alpha=\frac{\beta}{\beta+1}=\frac{3.5333}{4.5333}=0.7794=\frac{I_{C}}{I_{E}} \end{aligned}$
Q7. A transistor with $\beta=120$ is biased to operate at a DC collector current of 1.2 mA . Find the values of $\mathrm{gm}, \mathrm{r} \pi$, and re .	Solution: $g_{m}=\frac{I_{C}}{V_{T}}=\frac{1.2}{25}=0.048 \Omega^{-1}$

	$\begin{gathered} r_{\pi}=\frac{\beta}{g_{m}}=\frac{120}{0.048}=2500 \Omega \\ r_{e}=\frac{\alpha}{g_{m}}=\frac{\beta}{\beta+1} \frac{1}{g_{m}}=\frac{120}{121} \frac{1}{0.048}=20.7 \Omega \end{gathered}$
Q8. Find the collector voltage in the circuit shown below. Also, calculate forced β for the transistor. Assume the transistor is operating in saturation.	Solution: $\begin{aligned} \beta_{\text {forced }} & =\frac{I_{C}}{I_{B}} \\ & =\frac{\frac{V_{C C}-V_{C}}{R_{C}}}{\frac{V_{C C}-V_{C}-V_{B C}}{R_{B}}} \\ & =\frac{\frac{10-1.46}{10}}{\frac{10-1.46-0.5}{20}}=2.12 \end{aligned}$
Q9. Consider the circuit shown below. Find the emitter, base and collector voltages and currents. Use $\beta=50$, but assume $\left\|\mathrm{V}_{\mathrm{BE}}\right\|=0.8 \mathrm{~V}$ independent of current level.	Solution: Assuming the transistor is in active mode: $\begin{aligned} & V_{E}=-0.8 \rightarrow I_{E}=\frac{-0.8-(-3)}{2.2}=\frac{2.2}{2.2}=1 \mathrm{~mA} \\ & I_{B}=\frac{I_{E}}{\beta+1}=\frac{1}{51}=19.61 \times 10^{-3} \mathrm{~mA} \\ & I_{C}=\beta I_{B}=50 \times 33.78 \times 10^{-3}=0.980 \mathrm{~mA} \\ & V_{B}=0 \\ & V_{C}=3-2.2 \times 0.980=0.844 \mathrm{~V} . \\ & V_{B C}=0-(0.844)=-0.844 \leq 0.4 \rightarrow \text { the } \mathrm{CBJ} \text { is } \end{aligned}$ reverse-biased \rightarrow the transistor is in active mode as assumed!
Q10. For the circuit shown below, find $\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{E}}$ and V_{C} for $R_{B}=100 \Omega k$. Let $\beta=100$.	Solution: $\mathrm{R}_{B}=100 \mathrm{k} \Omega$ Assuming the transistor is in active mode: $\begin{aligned} & (\beta+1) I_{B}=I_{E} \\ & 101 \times \frac{5-\left(0.7+V_{E}\right)}{100}=\frac{V_{E}}{1} \rightarrow 4.3-V_{E}=\frac{100}{101} V_{E} \\ & \rightarrow V_{E}=2.16 \mathrm{~V} \rightarrow I_{E}=\frac{2.16}{1}=2.16 \mathrm{~mA} \\ & V_{B}=V_{E}+0.7=2.16+0.7=2.86 \mathrm{~V} \\ & V_{C}=5-1 \times I_{C}=5-\left(\frac{100}{101}\right) \times I_{E}=2.86 \mathrm{~V} \\ & V_{B C}=V_{B}-V_{C}=0 \leq 0.4 \mathrm{~V} \end{aligned}$ the BJT is in active mode as assumed.

Q11. (a) For the transistor circuit shown, what is V_{CE} when $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$? (b) What minimum value of I_{B} is required to saturate this transistor if $\beta_{D C}$ is 200 ? Neglect $V_{C E(\text { sat) })}$. (c) Calculate the maximum value of R_{B} when $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.	Solution: (a) When $V_{I N}=0 V$, the transistor is in cutoff $V_{C E}=V_{C C}=10 \mathrm{~V}=V_{C E(\text { auof })}$ (b) Since $V_{C E(s a r)}$ is neglected $\begin{aligned} & I_{C(\text { sat })}=\frac{V_{C C}}{R_{C}}=\frac{10 \mathrm{~V}}{1.0 K \Omega}=10 \mathrm{~mA} \\ & I_{B(\min)}=\frac{I_{C(s a t)}}{\beta_{D C}}=\frac{10 \mathrm{~mA}}{200}=50 \mu \mathrm{~A} \end{aligned}$ (c) When the transistor is on. $\begin{gathered} V_{B E} \cong 0.7 \mathrm{~V} \\ V_{R_{n}}=V_{I N}-V_{B E}=5-0.7 \mathrm{~V}=4.3 \mathrm{~V} \\ R_{B(\max)}=\frac{V_{R B}}{I_{B(\min)}}=\frac{4.3}{50 \mu \mathrm{~A}}=86 \mathrm{~K} \Omega \end{gathered}$
Q12. Determine the voltage at all nodes and current through the branches. Assume $\beta=100$.	Refer lecture notes
Q13. Determine the voltage at all nodes and current through the branches. Assume $\beta=100$.	Refer lecture notes

