19EEE114 Electronic Circuits

Assignment #5

Due on: 01st June 2022

Q1. For the circuit shown, find i_D and v_{DS} . For the NMOS, V_t = 1 V and Kn = 0.5 mA/V². Consider R_D = 1 k Ω

Q2. Design the circuit so that $i_D = 1$ mA and $v_{DS} = 2.5$ V. The NMOS has $V_t = 1$ V. Find k_n .

Q3. Design the circuit to establish a drain voltage of 0.2 V. What is the effective operating resistance between drain and source at this Q-point? Take $V_t = 1 \text{ V}$ and $k(W/L) = 2mA/V^2$.

Q4. The parameters for the transistor below are $kn = 0.5 \text{ mA/V}^2$, W/L=1, Vtn = 1.2 V, and $\lambda = 0$. Determine V_{DS} and V_{GS} for I_D = 1 mA. +5 V

Q5. The N-channel enhancement mode MOSFET in this circuit has the following parameters: Kn'(W/L) = $2mA/V^2$, V_{tn}=1V, and λ = 0. Determine the voltage V as shown.

- **Q6.** The n-channel MOSFET in this circuit has Kn'(W/L) = 2mA/V2 and V_{tn} =1V. Neglect λ . a) Determine the dc operating point.
 - b) Draw the small signal model for the circuit.
 - c) Determine the small-signal voltage gain.

- **Q7.** The parameters of the circuit shown below are $V_{DD} = 5 \text{ V}, \text{ R}_1 = 520 \text{ k}\Omega, \text{ R}_2 = 320 \text{ k}\Omega, \text{ R}_D = 10 \text{ k}\Omega, \text{ and } \text{R}_{\text{Sig}} = 0.$ Assume transistor parameters $V_{\text{tn}} = 0.8\text{V}, \text{ Kn} = 0.20 \text{ mA/V}^2$, and $\lambda = 0$.
 - (a) Determine the small-signal parameters $g_{\rm m}$ and $r_{\rm o}.$
 - (b) Find the small-signal voltage gain v_o/v_i .

