19EE114 Electronic Circuits 2nd Semester B.Tech. EEE

PN junction diodes

Biasing Ideal Characteristics Diode Current Characteristics Temperature Dependance

PN Junction Diode

- Allows current to flow in one direction but not the other
- The anode connects to the p-type material, the cathode to the n-type material of the diode.

Forward Biased Diodes

- The component is biased so that the anode is more positive than the cathode.
- The diode conducts fully when V_F is approximately 0.7 V (for silicon) or 0.3 V (for germanium).
- The value of I_F depends on the circuit voltage and resistance values.

Reverse Biased Diodes

- The component is biased so that the cathode is more positive than the anode.
- The voltage across the diode is approximately equal to the applied voltage.
- The diode current is approximately 0 A (as indicated by the ammeter).

Ideal diode characteristics

- When forward biased (closed switch), the diode:
 - Has no resistance.
 - Does not limit current.
 - Has no voltage drop across its terminals.

- When reverse biased (open switch), the diode:
 - Has infinite resistance.
 - Blocks current.
 - Drops the applied voltage across its terminals.

Current through Ideal diode

I = 0 mA

Circuit Connections

Problem #1

Find the values of *I* and V in the circuits shown below. Assume diodes to be ideal.

Solution: I = 2mA, V = 0V

Solution: I = 2mA, V = 0V

Characteristics of Junction diode

 I_D (mA)

Forward-bias region # Cut-in voltage - below which, minimal current flows

- approximately 0.5V

Fully conducting region – region where R_{diode} is approximately equal zero

– between 0.6 and 0.8V

Diode current,

$$i = I_s (e^{v/\eta V_{\tau}} - 1)$$

Characteristics of Junction diode

Reverse-bias region

Saturation current- constant current in reverse direction

i = - Is

Breakdown – when $V_D \ll 0$

Exponential Model

- most difficult to employ in circuit analysis
 - due to nonlinear nature

$$I_D = I_S e^{V_D / V_T}$$

$$V_D = \text{voltage across diode}$$

$$I_D = \text{current through diode}$$

• solve for I_D in the circuit

$$-V_{DD} = 5$$

- $-I_D = 1 \ mA @ 0.7V$
- Solution...
 - graphical method

Graphical Analysis Using Exponential Model

Diode Temperature dependence

The forward voltage drop decrease by approx. 2 mV for every 1°C increase in temperature

The reverse saturation current Is will double in magnitude for every 10°C increase in temperature

Diode Resistance

 $R_D = V_D / I_D$

• DC or Static Resistance

Diode Resistance

AC or Dynamic Resistance

Diode Resistance

• Determining AC or Dynamic Resistance

$$r_d = \frac{\eta V_T}{I_D}$$

At room temperature $V_T = 26 \text{ mV}$ $r_d = 26 \text{ mV} / I_D$

i-v relationship

•
$$I_D = I_s (e^{v_D/\eta v_T} - 1)$$

Current I₁ corresponding to diode voltage V₁ I₁ = I_s ($_{e}v_{1/\eta}v_{T}$) Current I₂ corresponding to diode voltage V₂ I₂ = I_s ($_{e}v_{2/\eta}v_{T}$)

$$I_{2}/I_{1} = e^{V_{2} - V_{1}/\eta V_{T}}$$
$$V_{2} - V_{1} = \eta V_{T} \ln(I_{2}/I_{1})$$
$$V_{2} - V_{1} = 2.3\eta V_{T} \log(I_{2}/I_{1})$$

Problem #2

Find the values of *I* and V in the circuits shown below. Assume diodes to be ideal.

Solution: I = 0 mA, V=5 V

Solution: I=2 mA, V=0 V

Problem #3

Find the values of *I* and V in the circuits shown below. Assume diodes to be ideal.

Solution: I=4 mA, V=-5 V