
Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 simple pipelining techniques use in-order instruction issue

and execution

 If an instruction is stalled in the pipeline no later instructions

can proceed

 If there is a dependence between two closely spaced

instructions in the pipeline, this will lead to a hazard and a

stall will result

 In Dynamic scheduling hardware rearranges the instruction

execution to reduce the stalls while maintaining data flow

and exception behavior.

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 Advantages

 Allows code compiled with one pipeline to run in a

different pipeline – eliminates recompile for a different

microarchitecture

 Enables handling some cases when dependences are

unknown at compile time

 Allows the processor to tolerate unpredictable delays,

such as cache misses, by executing other code while

waiting for the miss to resolve

 dynamically scheduled processor cannot change the data

flow, tries to avoid stalling when dependences are present

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 Example
DIV.D F0,F2,F4

ADD.D F10,F0,F8

SUB.D F12,F8,F14

 SUB.D instruction cannot execute because the dependence

of ADD.D on DIV.D causes the pipeline to stall

 This hazard creates a performance limitation that can be

eliminated by not requiring instructions to execute in program

order.
 To allow execution of SUB.D, the issue process should be

separated into two parts: checking for any structural hazards

and waiting for the absence of a data hazard – instruction

begins execution as soon as its data operands are available -

out-of-order execution, which implies out-of-order completion.

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 Out-of-order execution introduces the possibility of WAR and

WAW hazards
DIV.D F0,F2,F4

ADD.D F6,F0,F8

SUB.D F8,F10,F14

MUL.D F6,F10,F8

 antidependence between the ADD.D and the SUB.D, and if

the pipeline executes the SUB.D before the ADD.D - results a

WAR hazard.
 Output dependence between ADD.D and MUL.D - results in

WAW hazard

 Out-of-order execution should preserve the exception

behavior of the program i.e., exceptions that arise if the

program is executed in strict program order actually do arise

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 dynamically scheduled processors could generate imprecise

exceptions

 An exception is imprecise if the processor state when an

exception is raised does not look exactly as if the instructions

were executed sequentially in strict program order

 Two possibilities:

 1. The pipeline may have already completed instructions that

 are later in program order than the instruction causing the

 exception.

 2. The pipeline may have not yet completed some instructions

 that are earlier in program order than the instruction causing

 the exception.

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 To allow out-of-order execution, split the ID pipe stage of

simple five-stage pipeline into two stages:

 1. Issue—Decode instructions, check for structural hazards.

 2. Read operands—Wait until no data hazards, then read operands.

 IF ID EX MEM WB

 IF Issue Read operands EX MEM WB

 This pipeline allows multiple instructions in execution at the

same time which requires the presence of multiple functional

units.

 In a dynamically scheduled pipeline, all instructions pass

through the issue stage in order (in-order issue); they can be

stalled or bypass each other in the second stage (read

operands) and thus enter execution out of order.

Dynamic Scheduling

Dept. of EEE, Amrita School of Engineering

 Tracks when operands for instructions are available to

minimize RAW hazards

 Introduces register renaming in hardware to minimize WAW

and WAR hazards
DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

Tomasulo’s Approach

True data dependence
 ADD.D and DIV.D

 S.D and ADD.D

 MUL.D and SUB.D

Antidependence
 ADD.D and SUB.D

 S.D and MUL.D

Output dependence
 ADD.D and MUL.D

Dept. of EEE, Amrita School of Engineering

 register renaming – Assume the existence of two temporary

registers, S and T

 DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

 In Tomasulo’s scheme, register renaming is provided by

 reservation stations - buffers the operands of instructions

 waiting to issue

Tomasulo’s Approach

 DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

 DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D T,F10,F14

MUL.D F6,F10,T

Dept. of EEE, Amrita School of Engineering

 Presence of reservation stations can eliminate the hazards

arising from name dependences that could not be eliminated

by a compiler - there can be more reservation stations than

real registers

 Hazard detection and execution control are distributed - the

information held in the reservation stations at each functional

unit determines when an instruction can begin execution at

that unit

 Results are passed directly to functional units from the

reservation stations where they are buffered, rather than going

through the registers

 This bypassing is done with a common result bus that allows

all units waiting for an operand to be loaded simultaneously

called the common data bus (CDB)

Tomasulo’s Approach

Dept. of EEE, Amrita School of Engineering

Tomasulo’s Approach

Dept. of EEE, Amrita School of Engineering

 Issue

 Get the next instruction from the head of instruction queue,

in FIFO order to ensure the maintenance of correct data flow

 If a matching reservation station is empty, issue the

instruction to the station with the operand values, if they are

currently in the registers.

 If there is no empty reservation station, then there is a

structural hazard and the instruction stalls until a station or

buffer is freed.

 If the operands are not in the registers, keep track of the

functional units that will produce the operands. This step

renames registers, eliminating WAR and WAW hazards.

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 Execute

 When an operand becomes available, it is placed into any

reservation station awaiting it.

 When all the operands are available, the operation can be

executed at the corresponding functional unit.

 By delaying instruction execution until the operands are

available, RAW hazards are avoided.

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 Execute

 Loads and Stores require two-step execution process

 The first step computes the effective address when the base

register is available, and the effective address is then placed

in the load or store buffer.

 Loads in the load buffer execute as soon as the memory unit

is available.

 Stores in the store buffer wait for the value to be stored

before being sent to the memory unit.

 Loads and stores are maintained in program order through

the effective address calculation, which will help to prevent

hazards through memory.

 To preserve exception behavior, no instruction is allowed to

initiate execution until all branches that precede the

instruction in program order has been completed execution.

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 Write Result

 When the result is available, write it on the CDB and from

there into the registers and into any reservation stations

including store buffers, waiting for this result.

 Stores are buffered in the store buffer until both the value to

be stored and the store address are available, then the

result is written as soon as the memory unit is free.

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 The data structures that detect and eliminate hazards are

attached to the reservation stations, to the register file, and to the

load and store buffers with slightly different information attached

to different objects.

 The tag field describes which reservation station contains the

instruction that will produce a result needed as a source operand.

 Because there are more reservation stations than actual register

numbers, WAW and WAR hazards are eliminated by renaming

results using reservation station numbers.

 The combination of the common result bus and the retrieval of

results from the bus by the reservation stations implements the

forwarding and bypassing mechanisms used in a statically

scheduled pipeline.

 The tags in the Tomasulo scheme refer to the buffer or unit
that will produce a result

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 Each reservation station has seven fields:
 Op—The operation to perform on source operands S1 and S2.

 Vj, Vk—The value of the source operands.
 Qj, Qk—The reservation stations that will produce the

corresponding source operand; a value of zero indicates that

the source operand is already available in Vj or Vk, or is

unnecessary.

 A—Used to hold information for the memory address

calculation for a load or store. Initially, the immediate field of

the instruction is stored here; after the address calculation, the

effective address is stored here.

 Busy—Indicates that this reservation station and its

accompanying functional unit are occupied.

 The register file has a field, Qi:
 Qi—The number of the reservation station that contains the

operation whose result should be stored into this register.

Steps – an instruction goes through

Dept. of EEE, Amrita School of Engineering

 Show what the information tables look like for the following code

sequence when only the first load has completed and written its

result:
L.D F6,32(R2)

L.D F2,44(R3)

MUL.D F0,F2,F4

SUB.D F8,F2,F6

DIV.D F10,F0,F6

ADD.D F6,F8,F2

Example

Dept. of EEE, Amrita School of Engineering

Example

Dept. of EEE, Amrita School of Engineering

 Distribution of hazard detection logic
 Due to distributed reservation stations and use of the CDB.

 If multiple instructions are waiting on a single result, and each

instruction already has its other operand, then the instructions can

be released simultaneously by broadcast of result on the CDB.

 If a centralized register file were used, units have to read their

results from registers when register buses are available.

 Elimination of stalls for WAW and WAR hazards
 Done by renaming registers using the reservation stations and by

the process of storing operands into the reservation station as

soon as they are available

Advantages of Tomasulo’s Scheme

Dept. of EEE, Amrita School of Engineering

 Assume the following latencies:

 load is 1 clock cycle

 add is 2 clock cycles

 multiply is 6 clock cycles

 divide is 12 clock cycles.

 Show what the status table look like when the MUL.D is ready to

write its result.

L.D F6,32(R2)

L.D F2,44(R3)

MUL.D F0,F2,F4

SUB.D F8,F2,F6

DIV.D F10,F0,F6

ADD.D F6,F8,F2

Example

Dept. of EEE, Amrita School of Engineering

Example

Dept. of EEE, Amrita School of Engineering

 Eliminating WAW and WAR hazards through dynamic renaming of

registers

 Show what the status table look like when the loop is iterated twice

with no instruction completed

Loop: L.D F0,0(R1)

 MUL.D F4,F0,F2

 S.D F4,0(R1)

 DADDIU R1,R1,-8

 BNE R1,R2,Loop; branches if R1¦R2

 Assume the branch was predicted as taken.

 Loop unrolling is done dynamically using reservation stations.

 Consider all instructions in two successive iterations of loop but

none of the loads have finished writing the result.

Loop-Based Example

Dept. of EEE, Amrita School of Engineering

Loop-Based Example

Hardware Speculation

