Exp. No #6 Date:

FREQUENCY RESPONSE OF COMMON SOURCE AMPLIFIER

OBJECTIVE

The purpose of the experiment is to analyze and plot the frequency response of a single stage common source amplifier using MOSFET.

EQUIPMENT AND COMPONENTS USED

30 MHz Dual Channel Cathode Ray Oscilloscope

3 MHz Function Generator

0-30 V dc dual regulated power supply

4 1/2 digit Digital Multimeter

MOSFET BS170

 $285k\Omega$, $110k\Omega$, $1k\Omega$, 220Ω Resistors, ¼ W

 $22\mu F$, $100\mu F$, $0.22\mu F$ capacitors

Breadboard and Connecting wires

BNC Cables and Probes

THEORY

- FETs are preferred over BJTs due to its high input resistance.
- In common source amplifier, the output voltage is taken at the drain and is 180° out of phase with the input.
- An unbypassed resistance between the source and ground reduces the voltage gain of FET amplifier
- A load resistance connected to the drain of a common source amplifier reduces the voltage gain.
- The voltage gain is largely determined by the transconductance g_m and drain resistance R_D.

FURTHER READING

- 1. Robert Boylstad, Louis Nashelsky, "Electronic Devices and Circuit Theory", PHI, 2008.
- 2. James Cox, 'Fundamentals of Linear Electronics: Integrated and Discrete', Delmar Thomson Learning, 2nd edition, 2001.
- 3. Theodore F.Bogart, Jeffrey S.Beasley, "Electron Devices and Circuits, PHI.
- 4. Robert Diffenderfer, "Electronic Devices", Delmar Cengage Learning, 2005.

PRELAB

1.	Use SPICE to create a common source amplifier. Observe the dc operating conditions.
2.	Obtain a plot of the frequency response of the common collector amplifier over the frequency range from 1 Hz through 1 MHz. Observe the gain and bandwidth.

CIRCUIT DIAGRAM

PRACTICE PROCEDURE

- 1. Connect the circuit as shown in Figure 1.
- 2. Apply the bias voltage V_{DD} and check the dc bias voltages at test points.
- 3. Apply an input sine wave signal of 20mV, 1 kHz from the function generator.

- 4. Observe the output in CRO. Calculate the corresponding gain.
- 5. Vary the frequency of the input signal and tabulate the output signal gain for different frequencies.
- 6. Plot the Frequency Vs Gain (dB) using semi-log sheet and calculate the bandwidth of the given amplifier from the plot.

Graph 1: Input sine wave

Graph 2: Output Waveform

interence			

Table1: Frequency response

Input voltage, Vs = mV

Input frequency (Hz)	Output voltage, Vo (volts)	Gain = <u>Vo</u> Vs	20 log Gain (Gain in dB)
10			
20			
50			
100			
200			
500			
1k			
2k			
5k			
10k			
20k			
50k			
100k			
200k			
500k			
1M			

Inference		

Lab #6	EEE392 Measurements and Analog Circuits Lab
UNDERSTANDING & LEARNING	

2015 - 2016

RESULTS AND CONCLUSION

Prepared by: Name:	eg. No.:		
Experiment Date:	ASSESSMENT		
Report Submission Date:	Student Task	Max. Marks	Graded Marks
Submission Delay:	Pre-lab Preparation	15	
	Performance	10	
Signature	Observation & Inference	10	
	Post-lab / Viva-voce	15	
	Total	50	