FPGA Fabrics

 Wayne Wolf, 'FPGA-Based System Design' Pearson Education, 2004

CPLD

- Interconnection of several PLD blocks with Programmable interconnect on a single chip
- Logic blocks executes sum-of-product expressions and stores the results in micro-cell registers
- Programmable interconnects route signals to and from logic blocks

CPLD

Major CPLD Resources

- Number of macro-cells per logic block
- Number of inputs from programmable interconnect to logic block
- Number of product terms in logic block

FPGA

- Programmable Logic Blocks
 - Implement combinational & sequential logic
- Programmable Interconnect
 - Wires to connect inputs and outputs to logic blocks
- Programmable I/O blocks
 - Logic blocks at the periphery for external connections

Structure of FPGA

FPGA Fabric

- CLB: combinational logic block
 = logic element (LE).
- LUT: Lookup table = SRAM used for truth table.
- I/O block (IOB): I/O pin + associated logic and electronics.

FPGA Fabric

- Look-up table with N-inputs can be used to implement any combinational function of N-inputs
- LUT is programmed with truth table

FPGA Fabric

LUT

- 3-input LUT
- Based on Multiplexers
- LUT entries stored in configuration memory cells

FPGA Fabric (contd)

- Organized into channels.
 - Many wires per channel.
- Connections between wires made at programmable interconnection points.
- Must choose:
 - Channels from source to destination.
 - Wires within the channels.

Choosing a Path

Routing Problems

- Global routing:
 - Which combination of channels?
- Local routing:
 - Which wire in each channel?
- Routing metrics:
 - Net length.
 - Delay.

SRAM-based FPGA fabrics

XilinxAltera

N Krishna Prakash, , Amrita School of Engineering

SRAM-based FPGAs

- Program logic functions, interconnect using SRAM.
- Advantages:
 - Re-programmable;
 - dynamically reconfigurable;
 - Fabricated with standard VLSI processes.
- Disadvantages:
 - SRAM burns power.
 - Possible to steal, disrupt configuration bits.

Logic elements

- Logic element includes combinational function + register(s).
- Use SRAM as lookup table LUT for combinational function.

Evaluation of SRAM-based LUT

- N-input LUT can handle function of 2ⁿ inputs.
- All logic functions take the same amount of space.
- All functions have the same delay.
- SRAM is larger than static gate equivalent of function.
- Burns power at idle.
- Want to selectively add register to LE:

Registers in logic elements

Register may be selected into the circuit:

Other LE features

- Multiple logic functions in an LE are possible.
- Specialized Addition logic:
 - carry chain.
- Partitioned lookup tables.

Xilinx Spartan-II CLB

- Each CLB has two identical slices.
- Slice has two logic cells:
 - LUT.
 - Carry/control logic.
 - Registers.

Spartan-II CLB details

- Each lookup table can be used as a 16-bit synchronous RAM or 16-bit shift register.
- Arithmetic logic includes an XOR gate.
- Each slice includes a mux to combine the results of the two function generators in the slice.
- Register can be configured as DFF or latch.

Spartan-II CLB operation

- Arithmetic:
 - Carry block includes XOR gate.
 - Use LUT for carry, XOR for sum.
- Each slice uses F5 mux to combine results of multiplexers.
- F6 mux combines outputs of F5 muxes.
- Registers can be FF/latch; clock and clock enable.
- Includes three-state output for on-chip bus.

Altera APEX II logic element

- Each logic array block (LAB) has 10 logic elements.
- Each LE contains LUT, FF.
- Logic elements share some logic carry and control signal generation

Apex II LE modes

- Modes of operation:
 - Normal.
 - Arithmetic.
 - Counter.

APEX-II LE normal mode

APEX-II LE arithmetic mode

APEX-II LE counter mode

APEX-II LE control logic

Programmable interconnect

- Uses SRAM to hold information used to program interconnect
- MOS switch controlled by configuration bit:
- CMOS transistor pass transistor
- CMOS has good off state

Programmable vs. fixed interconnect

- Switch adds delay.
- Transistor off-state is worse in advanced technologies.
- FPGA interconnect has extra length = added capacitance.

Interconnect strategies

- Some wires will not be utilized.
- Congestion will not be same throughout chip.
- Types of wires:
 - Short wires: local LE connections.
- Global wires: long-distance, buffered communication.
 - Special wires: clocks, etc.

Paths in interconnect

Connection may be long, complex:

Interconnect architecture

- Connections from wiring channels to LEs.
- Connections between wires in the wiring channels.

Interconnect richness

- Within a channel:
 - How many wires.
 - Length of segments.
 - Connections from LE to channel.
- Between channels:
 - Number of connections between channels.
 - Channel structure.

Offset segments

Spartan-II interconnect

- Types of interconnect:
 - local;
 - general-purpose;
 - dedicated;
 - I/O pin
 - Global
 - Clock

Spartan-II general-purpose network

- Provides majority of routing resources:
 - General routing matrix (GRM) connects horizontal/vertical channels and CLBs.
 - Interconnect between adjacent GRMs.
 - Hex lines connect GRM to GRMs six blocks away.
 - Hex lines provide longer interconnect.
 - 12 longlines span the chip.

Spartan-II routing

 Relationship between GRM, hex lines, and local interconnect:

Spartan-II three-state bus

Horizontal on-chip busses:

Spartan-II clock distribution

Altera APEX II interconnect

Permanently programmed FPGAs

Antifuse

N Krishna Prakash, , Amrita School of Engineering

Antifuses

- Permanently programmed.
- Make a connection with electrical signal.
- Resistance of about 100 Ω which is more than standard via

N Krishna Prakash, , Amrita School of Engineering

Flash-programmed FPGA

- Flash is high quality programmable read only memory
- Uses a floating gate structure where low leakage capacitor holds a voltage that controls a transistor gate

Logic blocks

- Program by making connections.
- Based on multiplexing.

Larger logic block

N Krishna Prakash, , Amrita School of Engineering

Actel 54SX logic element

Actel 54SX adder logic

- Uses two C-cells in SuperCluster.
- Adds bits A0 and A1.
- Carry in FCI, carry out FCO.
- Active when CFN is high.

Actel 54SX R cell

N Krishna Prakash, , Amrita School of Engineering

Actel 54SX LE

- C/R cells organized into clusters.
 - Type 1 cluster: CRC.
 - Type 2 cluster: CRR.
- Clusters grouped into superclusters.
 - Type 1: two type 1 clusters.
 - Type 2: one type 1, one type 2.

Actel ProASIC 500K logic gate

Uses switches to connect inputs, feedback, etc.

Actel 54SX interconnect

- FastConnect provides horizontal connections between logic modules.
 - Within a supercluster.
 - To supercluster below.
- DirectConnect is within a supercluster:
 - connects C-cell to R-cell neighbor.
- Generic global wiring in segmented channels.

Antifuse programming

- Need to be able to apply programming voltage to every antifuse.
 - Path from VDD to GND.
- Programming can be performed slowly.
 - Don't need a lot of parallelism.
- Use the wiring network to gain access to the antifuses.
 - Access transistors control path to antifuse.

Antifuse programming access transistors

I/O pins

- Need programmable pins:
 - Input or output.
 - Three-state.
- Other features:
 - Registers.
 - Slew rate.
 - Voltage levels.
 - Double-data rate (DDR) support.

Actel APEX II I/O

- Supports SDRAM and double-data rate (DDR) memory.
- Six registers and latch.
- Bidirectional buffers.
- Two inputs and two outputs.

N Krishna Prakash, , Amrita School of Engineering

Circuit design for FPGAs:Logic elements.Interconnect.

Multiplexers as logic elements

Using antifuses

Static CMOS gate vs. LUT

- Number of transistors:
 - NAND/NOR gate has 2n transistors.
 - 4-input LUT has 128 transistors in SRAM, 96 in multiplexer.
- Delay:
 - 4-input NAND gate has 9τ delay.
 - SRAM decoding has 21τ delay.
- Power:
 - Static gate's power depends on activity.
 - SRAM always burns power.

Lookup table circuitry

Demultiplexer or multiplexer?

Lookup memory

- Multiplexer presents smaller load to memory cells.
 - Allows smaller memory cells.

Multiplexer design

- Pass transistor multiplexer uses fewer transistors than fully complementary gates.
- Pass transistor is somewhat faster than complementary switch:
 - Equal-strength p-type is 2.5X n-type width.
 - Total resistance is 0.5X, total capacitance is 3.5X.
 - RC delay is $0.5 \times 3.5 = 1.75$ times n-type switch.

Static gate four-input mux

- Delay through n-input NAND is (n+2)/3.
- Lg b + 1 inputs at first level, so delay is (lg b + 3)/3.
- Delay at second level is (b+2)/3.
- Delay grows as b lg b.

Pass-transistor-based four-input mux

 Must include decode logic in total delay.

Tree-based four-input mux

- Delay proportional to square of path length.
- Delay grows as lg b².

LE output drivers

- Must drive load:
 - Wire;
 - Destination LE.
- Different types of wiring present different loads.

Avoiding programming hazards

 Want to disable connections to routing channel before programming.

Interconnect circuits

- Why so many types of interconnect?
 - Provide a choice of delay alternatives.
- Sources of delay:
 - Wires.
 - Programming points.

Styles of programmable interconnection point

pass transistor

Three-state

Pass transistor programmable interconnect point

- Small area.
- Resistive switch.
- Delay grows as the square of the number of switches.

Clock drivers

Clock driver tree:

Clock nets

- Must drive all LEs.
- Design parameters:
 - number of fanouts;
 - Ioad per fanout;
 - wiring tree capacitance.
- Determine optimal buffer sizes.