
Hardware-based Speculation

Dept. of EEE, Amrita School of Engineering

 To exploit instruction-level parallelism, maintaining control
dependences becomes an increasing burden.

 For a processor executing multiple instructions per clock,
just predicting branches accurately may not be sufficient to
generate the desired amount of instruction-level parallelism

 Overcoming control dependence is done by speculating on
the outcome of branches and executing the program as if
the guesses were correct.

 Speculation ⇒ fetch, issue, and execute instructions as if
branch predictions were always correct

 Dynamic scheduling ⇒ only fetches and issues such
instructions

 Mechanisms are required to handle the situation when the
speculation goes incorrect.

Hardware-based Speculation

Dept. of EEE, Amrita School of Engineering

 Combines three key ideas
 dynamic branch prediction to choose which instructions to

execute
 speculation to allow the execution of instructions before the

control dependences are resolved
 ability to undo the effects of an incorrectly speculated sequence

 dynamic scheduling to deal with the scheduling of different
combinations of basic blocks

 Data flow execution - Predicted flow of data values to choose
when to execute instructions. Operations execute as soon as
their operands are available

Hardware-based Speculation

Dept. of EEE, Amrita School of Engineering

 The key idea
• allow instructions to execute out of order
• force instructions to commit in order
• prevent any irrevocable action (such as updating state or

taking an exception) until an instruction commits.
 Hence:

• Must separate execution from allowing instruction to finish
or “commit”

• instructions may finish execution considerably before
they are ready to commit.

 This additional step called instruction commit
 Adding this commit phase to the instruction execution

sequence requires an additional set of hardware buffers that
hold the results of instructions that have finished execution
but have not committed – Reorder buffer.

Hardware-based Speculation

Dept. of EEE, Amrita School of Engineering

 Holds the result of an instruction between the time the
operation associated with the instruction completes and the
time the instruction commits

 Source of operands for instructions, just as the reservation
stations provide operands in Tomasulo’s algorithm

 In Tomasulo’s algorithm, once an instruction writes its result,
any subsequently issued instructions will find result in the
register file

 With speculation, the register file is not updated until the
instruction commits

Reorder Buffer (ROB)

Dept. of EEE, Amrita School of Engineering

 Four fields - instruction type, destination field, value field,
and ready field

 Instruction type field indicates whether the instruction is a
branch (and has no destination result), a store (which has a
memory address destination), or a register operation (ALU
operation or load, which has register destinations)

 Destination field supplies the register number (for loads and
ALU operations) or the memory address (for stores) where
the instruction result should be written

 Value field is used to hold the value of the instruction result
until the instruction commits

 Ready field indicates that the instruction has completed
execution, and the value is ready

Reorder Buffer Structure

Dept. of EEE, Amrita School of Engineering

 Addition of the ROB and the elimination of the store buffer,
whose function is integrated into the ROB

 Renaming function of the reservation stations is replaced by
the ROB

 Tag a result using the ROB entry number rather than using
the reservation station number

Reorder Buffer Operation

Reorder
Buffer FP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Dept. of EEE, Amrita School of Engineering

Reorder Buffer Operation

Dept. of EEE, Amrita School of Engineering

 Issue
 Get an instruction from the instruction queue
 Issue the instruction if there is an empty reservation station

and an empty slot in the ROB
 Send the operands to the reservation station if they are

available in either the registers or the ROB
 Update the control entries to indicate the buffers are in use
 The number of the ROB entry allocated for the result is

also sent to the reservation station, so that the number can
be used to tag the result when it is placed on the CDB.

 If either all reservations are full or the ROB is full, then
instruction issue is stalled until both have available entries

Reorder Buffer Operation

Dept. of EEE, Amrita School of Engineering

 Execute
 If one or more of the operands is not yet available, monitor

the CDB while waiting for the register to be computed -
checking for RAW hazards.

 When both operands are available at a reservation station,
execute the operation.

 Instructions may take multiple clock cycles in this stage,
and loads still require two steps in this stage.

 Execution for a store is only effective address calculation

Reorder Buffer Operation

Dept. of EEE, Amrita School of Engineering

 Write Result
 When the result is available, write it on the CDB (with the

ROB tag sent when the instruction issued) and from the
CDB into the ROB, as well as to any reservation stations
waiting for this result

 Mark the reservation station as available.
 If the value to be stored is available, it is written into the

Value field of the ROB entry for the store.
 If the value to be stored is not available yet, the CDB must

be monitored until that value is broadcast, at which time the
Value field of the ROB entry of the store is updated.

Reorder Buffer Operation

Dept. of EEE, Amrita School of Engineering

 Commit
 Final stage of completing an instruction, after which only its

result remains – completion or graduation
 Normal commit - instruction reaches the head of the ROB

and its result is available in the buffer; updates the register
with the result and removes the instruction from the ROB

 Committing a store - similar to normal commit except that
memory address is updated rather than a result register

 Branch with incorrect prediction reaches the head of the
ROB, it indicates that the speculation is incorrect. The ROB
is flushed and execution is restarted at the correct
successor of the branch. If the branch was correctly
predicted, the branch is finished.

Reorder Buffer Operation

Dept. of EEE, Amrita School of Engineering

 Assume the latencies for the floating-point functional units as:
add is 2 clock cycles, multiply is 6 clock cycles, and divide is
12 clock cycles. Using the code segment below, show what
the status tables look like when the MUL.D is ready to go to
commit.

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2

Example

Dept. of EEE, Amrita School of Engineering

Example

Dept. of EEE, Amrita School of Engineering

 Show what the status table look like when the loop is iterated twice.
Assume that the L.D and MUL.D from the first iteration have
committed and all other instructions have completed execution.

Loop: L.D F0,0(R1)
 MUL.D F4,F0,F2
 S.D F4,0(R1)
 DADDIU R1,R1,-8
 BNE R1,R2,Loop; branches if R1¦R2

Example

Dept. of EEE, Amrita School of Engineering

Example

Exploiting ILP Using Multiple Issue &
Static Scheduling

Dept. of EEE, Amrita School of Engineering

 The goal of multiple-issue processors, is to allow multiple
instructions to issue in a clock cycle.

 Multiple-issue processors come in three major flavors:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 Dynamically scheduled superscalar processors

 The two types of superscalar processors issue varying numbers
of instructions per clock and use in-order execution if they are
statically scheduled or out-of order execution if they are
dynamically scheduled.

 VLIW processors issue a fixed number of instructions formatted
either as one large instruction or as a fixed instruction packet with
the parallelism among instructions explicitly indicated by the
instruction.

 VLIW processors are inherently statically scheduled by the
compiler.

Exploiting ILP Using Multiple Issue and
Static Scheduling

Dept. of EEE, Amrita School of Engineering

Exploiting ILP Using Multiple Issue and
Static Scheduling

Dept. of EEE, Amrita School of Engineering

 Use multiple, independent functional units

 Rather than attempting to issue multiple, independent
instructions to the units, a VLIW packages the multiple
operations into one very long instruction

 Multiple operations are placed in one instruction with maximum
issue rate

 Consider a VLIW processor with instructions that contain five
operations, including one integer operation or branch, two
floating-point operations, and two memory references - instruction
have a set of fields for each functional unit

 Intel Itanium 1 and 2 contain six operations per instruction packet

VLIW Approach

Dept. of EEE, Amrita School of Engineering

 Suppose a VLIW could issue two memory references, two
FP operations, and one integer operation or branch in every
clock cycle. Show an unrolled version of the loop

 x[i] = x[i] + s
 for such a processor. Unroll as many times as necessary to
 eliminate any stalls. Ignore delayed branches.

 Loop: L.D F0,0(R1) ;F0=array element
 ADD.D F4,F0,F2 ;add scalar in F2
 S.D F4,0(R1) ;store result
 DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
 BNE R1,R2,Loop ;branch R1!=R2

Example

Dept. of EEE, Amrita School of Engineering

Example

 Loop has been unrolled to make seven copies of the body,
which eliminates all stalls and runs in 9 cycles.

 Yields a running rate of seven results in 9 cycles, or 1.29 cycles
per result

 The issue rate is 23 operations in 9 clock cycles, or 2.5
operations per cycle.

Dept. of EEE, Amrita School of Engineering

 Mechanisms of dynamic scheduling, multiple issue, and
speculation

 Extend Tomasulo’s algorithm to support multiple issue
superscalar pipeline with separate integer, load/store, and
floating-point units (both FP multiply and FP add), each of
which can initiate an operation on every clock.

Exploiting ILP Using Dynamic Scheduling,
Multiple Issue, and Speculation

Dept. of EEE, Amrita School of Engineering

Exploiting ILP Using Dynamic Scheduling, Multiple
Issue, and Speculation

Dept. of EEE, Amrita School of Engineering

 Consider the execution of the following loop, which
increments each element of an integer array, on a two-issue
processor, once without speculation and once with
speculation:

 Loop: LD R2,0(R1) ;R2=array element
 DADDIU R2,R2,#1 ;increment R2
 SD R2,0(R1) ;store result
 DADDIU R1,R1,#8 ;increment pointer
 BNE R2,R3,LOOP ;branch if not last element

 Assume that there are separate integer functional units for
 effective address calculation, for ALU operations, and for branch
 condition evaluation. Create a table for the first three iterations of
 this loop for both processors. Assume that up to two instructions of
 any type can commit per clock.

Example

Dept. of EEE, Amrita School of Engineering

Example

The time of issue, execution, and writing result for a dual-issue version of pipeline
without speculation

Dept. of EEE, Amrita School of Engineering

Example

The time of issue, execution, and writing result for a dual-issue version of pipeline
with speculation

Dept. of EEE, Amrita School of Engineering

 To reduce the branch penalty for simple five-stage pipeline,
as well as for deeper pipelines, it must know whether the
as-yet-undecoded instruction is a branch and, if so, what the
next program counter (PC) should be.

 If the instruction is a branch and next PC is known, branch
penalty is zero.

 A branch-prediction cache stores the predicted address for
the next instruction after a branch is called a branch-target
buffer or branch-target cache.

 Branch-target buffer predicts the next instruction address
and will send it out before decoding the instruction.

 If the PC of the fetched instruction matches an address in
the prediction buffer, then the corresponding predicted PC is
used as the next PC

Branch Target Buffers

Dept. of EEE, Amrita School of Engineering

 The PC of the instruction being fetched is matched against a set of
instruction addresses stored in the first column; these represent the
addresses of known branches.

 If the PC matches one of these entries, then the instruction being fetched is
a taken branch, and the second field, predicted PC, contains the prediction
for the next PC after the branch. Fetching begins immediately at that
address.

 The third field, which is optional, may be used for extra prediction state bits.

Branch Target Buffers

Dept. of EEE, Amrita School of Engineering

Branch Target Buffers

Dept. of EEE, Amrita School of Engineering

Limits of ILP

Dept. of EEE, Amrita School of Engineering

Ideal Processor - Assumptions:
 Register Renaming
 Presence of infinite number of virtual registers.
 Unbounded number of instructions can begin execution

simultaneously.
 Branch Prediction
 Branch prediction is perfect.
 All conditional branches are predicted correctly.

 Jump Prediction
 All jumps are perfectly predicted.
 Equivalent to a processor with perfect speculation.
 Unbounded buffer available.

 Memory Address alias Analysis
 All memory addresses are known exactly.
 Perfect address alias analysis (load can be moved before a store

provided the addresses are not identical).
 Perfect Caches
 All memory accesses take 1 clock cycle.

Limits of ILP

Dept. of EEE, Amrita School of Engineering

 On Window Size and Maximum Issue Count

 Effects of Realistic Branch and Jump Prediction

 Effects of Finite Registers

 Effects of Imperfect Alias Analysis

Limits of ILP

Dept. of EEE, Amrita School of Engineering

 Perfect processor
 Determine a set of instructions to issue, predict the branches
 Rename all the registers
 Check for data dependences
 Memory dependences
 Provide enough replicated functional units

 Set of instructions examined for simultaneous execution is called a
window.

 Number of comparisons every clock = max completion rate * Window
Size * No. of operands per instruction.

 Total window is limited by Required storage, comparisons, limited
issue rate

 Window size directly limits the number of instructions for execution.
 Possible implementation constraints in a multiple-issue processor is

large – limits the ILP.

Window Size & Maximum Issue Count

Dept. of EEE, Amrita School of Engineering

 Ideal Processor – jumps and branches are predicted
correctly.

 Realistic prediction is not always correct !!!!

Effects of Branch and Jump Prediction

Effect of Finite Registers
 To exploit ILP, large number of registers are required to

avoid the hazards.
 Register renaming is critical – infinite number of registers

is not practical.

Effects of Imperfect Alias Analysis

	Slide Number 1
	Hardware-based Speculation
	Hardware-based Speculation
	Hardware-based Speculation
	Reorder Buffer (ROB)
	Reorder Buffer Structure
	Reorder Buffer Operation
	Reorder Buffer Operation
	Reorder Buffer Operation
	Reorder Buffer Operation
	Reorder Buffer Operation
	Reorder Buffer Operation
	Example
	Example
	Example
	Example
	Slide Number 17
	Exploiting ILP Using Multiple Issue and �Static Scheduling
	Exploiting ILP Using Multiple Issue and �Static Scheduling
	VLIW Approach
	Example
	Example
	Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation
	Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation
	Example
	Example
	Example
	Branch Target Buffers
	Branch Target Buffers
	Branch Target Buffers
	Limits of ILP
	Limits of ILP
	Limits of ILP
	Window Size & Maximum Issue Count
	Effects of Branch and Jump Prediction

