
Instruction Level Parallelism

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Instructions evaluated in parallel

 Sequential vs. Pipelining Execution

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Two approaches to exploit ILP
 Hardware based - dynamic

 Software (compiler) based - static

 In a pipelined machine, actual CPI is derived as:

CPIPipeline = CPIIdeal + Structural stalls + Data hazard stalls + Control stalls

 Reduction of any right-hand term reduces CPIpipeline to CPIideal

 or alternatively increase the Instructions Per Clock

IPC = 1 / CPI

 Best case: the max throughput would be to complete 1

 Instruction Per Clock:

IPCideal = 1; CPIideal = 1

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 For typical MIPS programs, the average dynamic branch

frequency is often between 15% and 25%.

 Since these instructions are likely to depend upon one

another, the amount of overlap that can be exploited within a

basic block is likely to be less than the average basic block

size.

 To obtain substantial performance enhancements, ILP must

be exploited across multiple basic blocks

 Best way to increase ILP is to exploit parallelism among

iterations of a loop - loop-level parallelism.

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Example – Loop level parallelism

 for (i=1; i<=1000; i++)

 x[i] = x[i] + y[i];

 Computation in each iteration is independent of the previous

iterations and the loop is thus parallel

 Different techniques to convert loop-level parallelism into

Instruction level parallelism.

Dependences

Dept. of EEE, Amrita School of Engineering

 Determining dependences among instructions is critical to

defining the amount of parallelism existing in a program

 To exploit instruction-level parallelism, it is critical to

determine which instructions can be executed in parallel.

 If two instructions are parallel, they can execute

simultaneously in a pipeline of arbitrary depth without

causing any stalls, assuming the pipeline has sufficient

resources (and hence no structural hazards exist).

 If two instructions are dependent, they are not parallel and

must be executed in order, although they may often be

partially overlapped

Dependences

Dept. of EEE, Amrita School of Engineering

 Three different types of dependences:

 data dependences

 name dependences

 control dependences

 An instruction j is data dependent on instruction i if:

 Instruction i produces a result that may be used by

instruction j.

 Instruction j is data dependent on instruction k, and

instruction k is data dependent on instruction i.

Data Dependences

Dept. of EEE, Amrita School of Engineering

 Example
Loop: L.D F0,0(R1) ;F0=array element

 ADD.D F4,F0,F2 ;add scalar in F2

 S.D F4,0(R1) ;store result

 DADDUI R1,R1,#-8 ;decrement pointer 8 bytes

 BNE R1,R2,LOOP ;branch R1!=R2

Data Dependences

Dept. of EEE, Amrita School of Engineering

 Example
Loop: L.D F0,0(R1) ;F0=array element

 ADD.D F4,F0,F2 ;add scalar in F2

 S.D F4,0(R1) ;store result

 DADDUI R1,R1,#-8 ;decrement pointer 8 bytes

 BNE R1,R2,LOOP ;branch R1!=R2

Data Dependences

Dept. of EEE, Amrita School of Engineering

 A data dependence conveys three things:

 possibility of a hazard

 order in which results must be calculated

 an upper bound on parallelism possibly be exploited

 A dependence can be overcome in two different ways:

 maintaining the dependence but avoiding a hazard

 eliminating a dependence by transforming the code

 Scheduling the code is the primary method used to avoid a hazard

without altering a dependence, and such scheduling can be done

both by the compiler and by the hardware.

 A data value may flow between instructions either through

registers or through memory locations - detecting dependence is

straightforward since the register names are fixed in the

instructions.

Name Dependences

Dept. of EEE, Amrita School of Engineering

 Occurs when two instructions use the same register or

memory location, called a name, but there is no flow of data

between the instructions associated with that name.

 Two types of name dependences between an instruction i

that precedes instruction j in program order:

 Antidependence - when instruction j writes a register or memory

location that instruction i reads. The original ordering must be

preserved to ensure that i reads the correct value.

 i: sub r4,r1,r3

 j: add r1,r2,r3

 k: mul r6,r1,r7

Name Dependences

Dept. of EEE, Amrita School of Engineering

 Output dependence - when instruction i and instruction j write

the same register or memory location. The ordering between the

instructions must be preserved to ensure that the value finally

written corresponds to instruction j.

 i: sub r1,r4,r3
 j: add r1,r2,r3

 k: mul r6,r1,r7

Name Dependences

Dept. of EEE, Amrita School of Engineering

 Instructions involved in a name dependence can execute

simultaneously or be reordered, if the name (register number

or memory location) used in the instructions is changed so

the instructions do not conflict.

 Renaming can be more easily done for register operands,

where it is called register renaming.

 Register renaming can be done either statically by a

compiler or dynamically by the hardware.

Data Hazards

Dept. of EEE, Amrita School of Engineering

 A hazard exists whenever there is a name or data

dependence between instructions, and they are close

enough that the overlap during execution would change the

order of access to the operand involved in the dependence.

 program order— the order that the instructions would

execute in if executed sequentially one at a time as

determined by the original source program.

 The goal of software and hardware techniques is to exploit

parallelism by preserving program order only where it affects

the outcome of the program.

 Detecting and avoiding hazards ensures that necessary

program order is preserved.

Data Hazards

Dept. of EEE, Amrita School of Engineering

 Consider two instructions i and j, with i preceding j in program
order. The possible data hazards are:

 RAW (read after write)—j tries to read a source before i writes

it, so j incorrectly gets the old value.

 WAW (write after write) — j tries to write an operand before

it is written by i.

 WAR (write after read)—j tries to write a destination before it is
 read by i, so i incorrectly gets the new value.

RAW

Dept. of EEE, Amrita School of Engineering

 RAW (read after write)—j tries to read a source before i writes
it, so j incorrectly gets the old value.

 corresponds to a true data dependence. Program order must be preserved to

 ensure that j receives the value from i.

Example

 DADD R1, R2, R3

 DSUB R4, R5, R1

 Subtract reads output of the addition, creating a RAW hazard

WAW

Dept. of EEE, Amrita School of Engineering

 WAW (write after write) — j tries to write an operand before

it is written by i.

 The writes end up in the wrong order, leaving the value written by i rather than

 the value written by j in the destination. Corresponds to an output dependence.

 Occur only in pipelines that write in more than one pipe stage or allow an

 instruction to proceed even when a previous instruction is stalled.

Example
 DADD R1, R2, R3

 DSUB R1, R5, R6

 Subtract writes the same register as the addition, creating a WAW

hazard

WAR

Dept. of EEE, Amrita School of Engineering

 WAR (write after read)—j tries to write a destination before it
 is read by i, so i incorrectly gets the new value.

 Occurs either when there are some instructions that write results early in the

 instruction pipeline and other instructions that read a source late in the pipeline

Example
 DADD R1, R2, R3

 DSUB R2, R5, R6

 Subtract writes R2, which is read by the addition, creating a WAR

hazard

Data Hazards

Dept. of EEE, Amrita School of Engineering

 A data/name dependence can potentially generate a data

 hazard (RAW, WAW, or WAR), but the actual hazard and the

 number of stalls to eliminate the hazards are a property of

 the pipeline.

 Dependences are a property of the program, while hazards

are a property of the pipeline.

Control Dependences

Dept. of EEE, Amrita School of Engineering

 A control dependence determines the ordering of an

instruction, i, with respect to a branch instruction so that

instruction i is executed in correct program order and only

when it should be.

if p1 then

{

 S1;

}

if p2 then

{

 S2;

}

 S1 is control dependent on p1, and S2 is control dependent on
p2 but not on p1.

Control Dependences

Dept. of EEE, Amrita School of Engineering

 Two constraints are imposed by control dependences

 An instruction that is control dependent on a branch

cannot be moved before the branch so that its execution is

no longer controlled by the branch.

 An instruction that is not control dependent on a branch

cannot be moved after the branch so that its execution is

controlled by the branch.

 When processors preserve strict program order, they ensure

that control dependences are also preserved.

 Two properties critical to program correctness—and normally

preserved by maintaining both data and control

dependences—are the exception behavior and the data flow.

Control Dependences

Dept. of EEE, Amrita School of Engineering

 Example
 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1:

 if control dependence is ignored and load instruction is

moved before the branch, the load instruction may cause a

memory protection exception.

 no data dependence prevents from interchanging BEQZ

and LW; it is only the control dependence
 data flow is the actual flow of data values among instructions

that produce results and those that consume them.

 Branches make the data flow dynamic, since they allow the

source of data for a given instruction to come from many

points.

Control Dependences

Dept. of EEE, Amrita School of Engineering

 Example
 DADDU R1,R2,R3

 BEQZ R4,L

 DSUBU R1,R5,R6

L: ...

 OR R7,R1,R8

 Value of R1 used by the OR instruction depends on whether

the branch is taken or not.

 Data dependence alone is not sufficient to preserve

correctness.

 The OR instruction is data dependent on both the DADDU and

DSUBU instructions, but preserving that order alone is

insufficient for correct execution.

 the DSUBU instruction cannot be moved above the branch

Basic Compiler Techniques for

Exposing ILP

Dept. of EEE, Amrita School of Engineering

Basic Pipeline Scheduling

Dept. of EEE, Amrita School of Engineering

 To keep a pipeline full, parallelism among instructions must

be exploited by finding sequences of unrelated instructions

that can be overlapped in the pipeline.

 To avoid a pipeline stall, the execution of a dependent

instruction must be separated from the source instruction by

a distance in clock cycles equal to the pipeline latency of that

source instruction.

 A compiler’s ability to perform this scheduling depends both

on the amount of ILP available in the program and on the

latencies of the functional units in the pipeline.

Basic Pipeline Scheduling

Dept. of EEE, Amrita School of Engineering

 Assumption

 standard five-stage integer pipeline, so that branches have

a delay of one clock cycle.

 the functional units are fully pipelined or replicated (as

many times as the pipeline depth), so that an operation of

any type can be issued on every clock cycle and there are

no structural hazards.
 Latencies of FP operations

Basic Pipeline Scheduling

Dept. of EEE, Amrita School of Engineering

 Consider the following code segment, which adds a scalar to

 a vector:
 for (i=999; i>=0; i=i–1)

 x[i] = x[i] + s;

 Loop is parallel - the body of each iteration is independent

Loop: L.D F0,0(R1) ;F0=array element

 ADD.D F4,F0,F2 ;add scalar in F2

 S.D F4,0(R1) ;store result

 DADDUI R1,R1,#-8 ;decrement pointer

 ;8 bytes (per DW)

 BNE R1,R2,Loop ;branch R1!=R2

Basic Pipeline Scheduling

Dept. of EEE, Amrita School of Engineering

Example: Show how the loop would look on MIPS, both

 scheduled and unscheduled, including any stalls or

 idle clock cycles. Schedule for delays from floating-

 point operations, ignoring delayed branches.

Without Scheduling
With Scheduling

Loop Unrolling

Dept. of EEE, Amrita School of Engineering

 simple scheme for increasing the number of instructions

relative to the branch and overhead instructions

 Unrolling replicates the loop body multiple times, adjusting

the loop termination code.

 used to improve scheduling – eliminates the branch, it allows

instructions from different iterations to be scheduled together

 Eliminate the data use stalls by creating additional

independent instructions within the loop body.

Loop Unrolling

Dept. of EEE, Amrita School of Engineering

 Example: Unroll the loop so that there are four copies of the

loop body, assuming R1 – R2 (that is, the size of the array) is

initially a multiple of 32, which means that the number of

loop iterations is a multiple of 4.

Loop Unrolling

Dept. of EEE, Amrita School of Engineering

 Example: Show the unrolled loop in the previous example

after it has been scheduled for the pipeline with the latencies

The execution time of the unrolled

loop has dropped to a total of 14

clock cycles, or 3.5 clock cycles

per element, compared with 9

cycles per element before any

unrolling or scheduling and 7

cycles when scheduled but not

unrolled.

Loop Unrolling

Dept. of EEE, Amrita School of Engineering

 Limitations
 code size limitations
 compiler limitations

Branch Prediction

Dept. of EEE, Amrita School of Engineering

