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 Instructions evaluated in parallel 

 Sequential vs. Pipelining Execution 
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 Two approaches to exploit ILP 
 Hardware based - dynamic 

 Software (compiler) based - static 

 In a pipelined machine, actual CPI is derived as: 

 
CPIPipeline = CPIIdeal + Structural stalls + Data hazard stalls + Control stalls 

 
 Reduction of any right-hand term reduces CPIpipeline to CPIideal 

      or alternatively increase the Instructions Per Clock 

IPC = 1 / CPI 

 Best case: the max throughput would be to complete 1 

    Instruction Per Clock: 

IPCideal = 1; CPIideal = 1 
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 For typical MIPS programs, the average dynamic branch 

frequency is often between 15% and 25%. 

 

 Since these instructions are likely to depend upon one 

another, the amount of overlap that can be exploited within a 

basic block is likely to be less than the average basic block 

size.  

 

 To obtain substantial performance enhancements, ILP must 

be exploited across multiple basic blocks 

 

 Best way to increase ILP is to exploit parallelism among 

iterations of a loop - loop-level parallelism. 
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 Example – Loop level parallelism 

 
  for (i=1; i<=1000; i++) 

       x[i] = x[i] + y[i]; 

 

 Computation in each iteration is independent of the previous 

iterations and the loop is thus parallel 

 

 Different techniques to convert loop-level parallelism into 

Instruction level parallelism. 
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 Determining dependences among instructions is critical to 

defining the amount of parallelism existing in a program 

 

 To exploit instruction-level parallelism, it is critical to 

determine which instructions can be executed in parallel.  

 

 If two instructions are parallel, they can execute 

simultaneously in a pipeline of arbitrary depth without 

causing any stalls, assuming the pipeline has sufficient 

resources (and hence no structural hazards exist). 

 

 If two instructions are dependent, they are not parallel and 

must be executed in order, although they may often be 

partially overlapped 
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 Three different types of dependences:  

 data dependences 

 name dependences 

 control dependences 

 

 An instruction j is data dependent on instruction i if: 

 

 Instruction i produces a result that may be used by 

instruction j. 

 

 Instruction j is data dependent on instruction k, and 

instruction k is data dependent on instruction i. 
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 Example 
Loop: L.D F0,0(R1)   ;F0=array element 

 

      ADD.D F4,F0,F2   ;add scalar in F2 

 

      S.D F4,0(R1)     ;store result 

 

    DADDUI R1,R1,#-8 ;decrement pointer 8 bytes  

        

      BNE R1,R2,LOOP    ;branch R1!=R2 
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 Example 
Loop: L.D F0,0(R1)   ;F0=array element 

 

      ADD.D F4,F0,F2   ;add scalar in F2 

 

      S.D F4,0(R1)     ;store result 

 

    DADDUI R1,R1,#-8 ;decrement pointer 8 bytes  

        

      BNE R1,R2,LOOP    ;branch R1!=R2 



Data Dependences 

Dept. of EEE,  Amrita School of Engineering 

 A data dependence conveys three things:  

 possibility of a hazard 

 order in which results must be calculated 

 an upper bound on parallelism possibly be exploited 

 

 A dependence can be overcome in two different ways:  

 maintaining the dependence but avoiding a hazard 

 eliminating a dependence by transforming the code 

 

 Scheduling the code is the primary method used to avoid a hazard 

without altering a dependence, and such scheduling can be done 

both by the compiler and by the hardware. 

 

 A data value may flow between instructions either through 

registers or through memory locations - detecting dependence is 

straightforward since the register names are fixed in the 

instructions. 
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 Occurs when two instructions use the same register or 

memory location, called a name, but there is no flow of data 

between the instructions associated with that name.  

 

 Two types of name dependences between an instruction i 

that precedes instruction j in program order:  

 
 Antidependence - when instruction j writes a register or memory 

location that instruction i reads. The original ordering must be 

preserved to ensure that i reads the correct value. 

 

  i: sub r4,r1,r3  

  j: add r1,r2,r3  

  k: mul r6,r1,r7 
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 Output dependence - when instruction i and instruction j write 

the same register or memory location. The ordering between the 

instructions must be preserved to ensure that the value finally 

written corresponds to instruction j. 

 

   i: sub r1,r4,r3  
 j: add r1,r2,r3  

 k: mul r6,r1,r7 
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 Instructions involved in a name dependence can execute 

simultaneously or be reordered, if the name (register number 

or memory location) used in the instructions is changed so 

the instructions do not conflict. 

 

 Renaming can be more easily done for register operands, 

where it is called register renaming.  

 

 Register renaming can be done either statically by a 

compiler or dynamically by the hardware.  
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 A hazard exists whenever there is a name or data 

dependence between instructions, and they are close 

enough that the overlap during execution would change the 

order of access to the operand involved in the dependence. 

 

 program order— the order that the instructions would 

execute in if executed sequentially one at a time as 

determined by the original source program.  

 

 The goal of software and hardware techniques is to exploit 

parallelism by preserving program order only where it affects 

the outcome of the program.  

 

 Detecting and avoiding hazards ensures that necessary 

program order is preserved. 
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 Consider two instructions i and j, with i preceding j in program 
order. The possible data hazards are: 
 
 RAW (read after write)—j tries to read a source before i writes 

it, so j incorrectly gets the old value. 
 

 WAW (write after write) — j tries to write an operand before 

it is written by i. 
 

  WAR (write after read)—j tries to write a destination before it is  
    read by i, so i incorrectly gets the new value. 
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 RAW (read after write)—j tries to read a source before i writes 
it, so j incorrectly gets the old value. 

              corresponds to a true data dependence. Program order must be preserved to    

            ensure that j  receives the value from i. 

 
Example 
 

  DADD R1, R2, R3  

  DSUB R4, R5, R1 

 
 Subtract reads output of the addition, creating a RAW hazard 
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 WAW (write after write) — j tries to write an operand before 

it is written by i. 

   The writes end up in the wrong order, leaving the value written by i rather than  

    the value written by j in the destination. Corresponds to an output dependence.   

    Occur only in pipelines that write in more than one pipe stage or allow an   

    instruction to proceed even when a previous instruction is stalled. 

 
Example 
  DADD R1, R2, R3  

  DSUB R1, R5, R6 

 
 Subtract writes the same register as the addition, creating a WAW 

hazard 
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 WAR (write after read)—j tries to write a destination before it    
       is read by i, so i incorrectly gets the new value. 

           Occurs either when there are some instructions that write results early in the   

           instruction pipeline and other instructions that read a source late in the pipeline 

 
Example 
  DADD R1, R2, R3  

  DSUB R2, R5, R6 

 
 Subtract writes R2, which is read by the addition, creating a WAR 

hazard 
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 A data/name dependence can potentially generate a data 

  hazard (RAW, WAW, or WAR), but the actual hazard and the 

  number of stalls to eliminate the hazards are a property of 

  the pipeline. 

 

 Dependences are a property of the program, while hazards 

are a property of the pipeline. 
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 A control dependence determines the ordering of an 

instruction, i, with respect to a branch instruction so that 

instruction i is executed in correct program order and only 

when it should be. 
 

if p1 then 

{ 

     S1; 

} 

if p2 then 

{ 

     S2; 

} 

 

 S1 is control dependent on p1, and S2 is control dependent on 
p2 but not on p1. 
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 Two constraints are imposed by control dependences 

 An instruction that is control dependent on a branch 

cannot be moved before the branch so that its execution is 

no longer controlled by the branch. 

 

 An instruction that is not control dependent on a branch 

cannot be moved after the branch so that its execution is 

controlled by the branch. 

 

 When processors preserve strict program order, they ensure 

that control dependences are also preserved. 

 

 Two properties critical to program correctness—and normally 

preserved by maintaining both data and control 

dependences—are the exception behavior and the data flow. 
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 Example 
  DADDU R2,R3,R4 

  BEQZ R2,L1 

  LW R1,0(R2) 

  L1: 

 if control dependence is ignored and load instruction is 

moved before the branch, the load instruction may cause a 

memory protection exception. 

 no data dependence prevents from interchanging BEQZ 

and LW; it is only the control dependence 
 data flow is the actual flow of data values among instructions 

that produce results and those that consume them.  

 Branches make the data flow dynamic, since they allow the 

source of data for a given instruction to come from many 

points. 
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 Example 
   DADDU R1,R2,R3 

   BEQZ R4,L 

   DSUBU R1,R5,R6 

L: ... 

   OR R7,R1,R8 

 

 Value of R1 used by the OR instruction depends on whether 

the branch is taken or not.  

 Data dependence alone is not sufficient to preserve 

correctness.  

 The OR instruction is data dependent on both the DADDU and 

DSUBU instructions, but preserving that order alone is 

insufficient for correct execution. 

 the DSUBU instruction cannot be moved above the branch 
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 To keep a pipeline full, parallelism among instructions must 

be exploited by finding sequences of unrelated instructions 

that can be overlapped in the pipeline. 

 

 To avoid a pipeline stall, the execution of a dependent 

instruction must be separated from the source instruction by 

a distance in clock cycles equal to the pipeline latency of that 

source instruction. 

 

 A compiler’s ability to perform this scheduling depends both 

on the amount of ILP available in the program and on the 

latencies of the functional units in the pipeline. 
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 Assumption 

 standard five-stage integer pipeline, so that branches have 

a delay of one clock cycle.  

 the functional units are fully pipelined or replicated (as 

many times as the pipeline depth), so that an operation of 

any type can be issued on every clock cycle and there are 

no structural hazards. 
 Latencies of FP operations 
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  Consider the following code segment, which adds a scalar to    

    a vector: 
 for (i=999; i>=0; i=i–1) 

 x[i] = x[i] + s; 

  Loop is parallel - the body of each iteration is independent 

Loop: L.D F0,0(R1)    ;F0=array element 

   ADD.D F4,F0,F2  ;add scalar in F2 

      S.D F4,0(R1)    ;store result 

   DADDUI R1,R1,#-8  ;decrement pointer 

      ;8 bytes (per DW) 

   BNE R1,R2,Loop  ;branch R1!=R2 
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Example: Show how the loop would look on MIPS, both  

                scheduled and unscheduled, including any stalls or  

                idle clock cycles. Schedule for delays from floating- 

                point operations, ignoring delayed branches. 

Without Scheduling 
With Scheduling 
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 simple scheme for increasing the number of instructions 

relative to the branch and overhead instructions  

 

 Unrolling replicates the loop body multiple times, adjusting 

the loop termination code. 

 

 used to improve scheduling – eliminates the branch, it allows 

instructions from different iterations to be scheduled together 

 

 Eliminate the data use stalls by creating additional 

independent instructions within the loop body. 
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 Example: Unroll the loop so that there are four copies of the 

loop body, assuming R1 – R2 (that is, the size of the array) is 

initially a multiple of 32, which means that the number of 

loop iterations is a multiple of 4. 
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 Example: Show the unrolled loop in the previous example 

after it has been scheduled for the pipeline with the latencies 

The execution time of the unrolled 

loop has dropped to a total of 14 

clock cycles, or 3.5 clock cycles 

per element, compared with 9 

cycles per element before any 

unrolling or scheduling and 7 

cycles when scheduled but not 

unrolled. 
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 Limitations 
 code size limitations 
 compiler limitations 
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