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 Situations prevent the next instruction in the instruction 

stream from executing during its designated clock cycle 

– Hazards 

 Reduces the performance from the ideal speedup 

gained by pipelining 

 classes of hazards 
• Structural hazards - resource conflicts when the hardware 

cannot support all possible combinations of instructions 

simultaneously in overlapped execution. 

• Data hazards - an instruction depends on the results of a 

previous instruction in a way that is exposed by the overlapping 

of instructions in the pipeline. 

• Control hazards - pipelining of branches and other instructions 

that change the PC. 
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Data Hazards 
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 Occurs when the pipeline changes the order of read/write 

accesses to operands so that the order differs from the 

order seen by sequentially executing instructions on an 

unpipelined processor. 

 Consider the execution of following instructions 
DADD R1,R2,R3 

DSUB R4,R1,R5 

AND  R6,R1,R7 

OR   R8,R1,R9 

XOR  R10,R1,R11 

 All instructions after DADD use the result of DADD 

instruction  

 DADD instruction writes value of R1 in the WB pipe stage, 

but DSUB instruction reads the value during its ID stage.  

 DSUB instruction will read the wrong value and try to use it. 



Minimizing Data Hazard Stalls by Forwarding 
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 The problem can be solved with a simple hardware 

technique called forwarding (also called bypassing).  

 The key insight in forwarding is that the result is not really 

needed by the DSUB until after the DADD actually 

produces it.  

 If the result can be moved from the pipeline register where 

the DADD stores it to where the DSUB needs it, then the 

need for a stall can be avoided.  

 Forwarding can be generalized to include passing a result 

directly to the functional unit that requires it. 
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Minimizing Data Hazard Stalls by Forwarding 
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 Consider the following sequence 
DADD R1,R2,R3 

LD  R4,0(R1) 

SD  R4,12(R1) 

 Result of the load is forwarded from the memory output to the 

memory input to be stored 

 ALU output is forwarded to ALU input for address calculation 

of both the load and the store 
 



Data Hazards Requiring Stalls 
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 Not all potential data hazards can be handled by bypassing 

 

 Consider the following sequence 
LD  R1,0(R2) 

DSUB R4,R1,R5 

AND  R6,R1,R7 

OR  R8,R1,R9 

 

 The LD instruction does not have the data until the end of 

clock cycle 4 (its MEM cycle), while the DSUB instruction 

needs to have the data by the beginning of that clock cycle. 

 

 Data hazard from using the result of a load instruction cannot 

be completely eliminated with simple hardware 

 



Data Hazards Requiring Stalls 
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 Load instruction has a delay or latency that cannot be eliminated 

by forwarding alone.  

 Instead, a hardware is required to preserve the correct execution 

pattern , called a pipeline interlock. 

 Pipeline interlock detects a hazard and stalls the pipeline until the 

hazard is cleared. 



Data Hazards Requiring Stalls 
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 Interlock stalls the pipeline, beginning with the instruction that 

wants to use the data until the source instruction produces it.  

 Pipeline interlock introduces a stall or bubble like in structural 

hazard. 
LD  R1,0(R2) 

DSUB R4,R1,R5 

AND  R6,R1,R7 

OR  R8,R1,R9 

 



Branch Hazards 
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 Control hazards cause a greater performance loss for MIPS 

pipeline than do data hazards.  

 When a branch is executed, it may or may not change the PC 

to something other than its current value plus 4.  

 If a branch changes the PC to its target address, it is a taken 

branch;  

 If a branch execution does not change the PC, it is not taken, 

or untaken.  

 If instruction i is a taken branch, then the PC is normally not 

changed until the end of ID.  

 Best way to handle branches is to redo the fetch of the 

instruction following a branch, once detected during ID. 

 The first IF cycle is essentially a stall, because it never 

performs useful work.  

 One stall cycle for every branch will yield a performance loss 

of 10% to 30% depending on the branch frequency. 

 



Branch Hazards 
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 Instruction after the branch is fetched, but the instruction is 

ignored, and the fetch is restarted once the branch target is 

known. 

 If the branch is not taken, the second IF for branch 

successor is redundant. 
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 1) The simplest scheme to handle branches is to freeze or 

flush the pipeline, holding or deleting any instructions after 

the branch until the branch destination is known.  

 

 In this case, Branch penalty is fixed and cannot be reduced 

by software 

 

 2) A higher-performance, and only slightly more complex, 

scheme is to treat every branch as not taken, simply 

allowing the hardware to continue as if the branch were not 

executed.  

 

 Processor state is not changed until the branch outcome is 

definitely known. 
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 In the simple five-stage pipeline, this predicted-not-taken or 

predicted untaken scheme is implemented by continuing to 

fetch instructions as if the branch were a normal instruction.  

 The pipeline looks as if nothing out of the ordinary is 

happening. 

 If the branch is taken, fetched instruction is turned into a no-

op and restart the fetch at the target address. 

 



Reducing Pipeline Branch Penalties 
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 3) An alternative scheme is to treat every branch as taken.   

 As soon as the branch is decoded and the target address is 

computed, assume the branch to be taken and begin 

fetching and executing at the target.  

 In five-stage pipeline, the target address is not known 

earlier - there is no advantage in this approach 

 



Reducing Pipeline Branch Penalties 
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 4) Delayed branch - technique heavily used in early RISC 

processors and works well in five-stage pipeline 

 execution cycle with branch delay of one 
branch instruction 

sequential successor1 
branch target if taken 

 sequential successor is in the branch delay slot and is 

executed whether or not the branch is taken. 
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i) From before – scheduled with an independent instruction from before the         

                           branch 

 

becomes 
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i) From before – scheduled with an independent instruction from before the         

                           branch 

 

becomes 

ii) From target – preferred when the branch is taken with high probability,   

                           such as a loop branch. 

DSUB R4, R5, R6 

 

 

DADD R1, R2, R3 

if R1 == 0 then 

 
 

Branch delay slot 

DSUB R4, R5, R6 

 

 

DADD R1, R2, R3 

if R1 == 0 then 

 
 
DSUB R4, R5, R6 



Scheduling the delay slots 
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i) From before – scheduled with an independent instruction from before the         

                           branch 

 

becomes 

ii) From target – preferred when the branch is taken with high probability,   

                           such as a loop branch. 

iii) the branch may be scheduled from the not-taken fall-through 

DADD R1, R2, R3 

if R1 == 0 then 

 
 
    OR R7, R8, R9 

DSUB R4, R5, R6 

Branch delay slot 

DADD R1, R2, R3 

if R1 == 0 then 

 
 
     

DSUB R4, R5, R6 

OR R7, R8, R9 



Scheduling the delay slots 
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 Limitations on delayed-branch scheduling arise from:  
 restrictions on the instructions that are scheduled into the 

delay slots 

 ability to predict at compile time whether a branch is likely to 

be taken or not  

 To improve the ability of the compiler to fill branch delay 

slots - canceling or nullifying branch  

 

 When the branch behaves as predicted, the instruction in 

the branch delay slot is executed as it would normally be 

with a delayed branch.  

 

 When the branch is incorrectly predicted, the instruction in 

the branch delay slot is simply turned into a no-op. 



Performance of Branch Schemes 
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MIPS Pipeline Implementation 
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Instruction Level Parallelism 
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 Instructions evaluated in parallel 

 Sequential vs. Pipelining Execution 

 



Instruction Level Parallelism 
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 Two approaches to exploit ILP 
 Hardware based - dynamic 

 Software (compiler) based - static 

 In a pipelined machine, actual CPI is derived as: 

 
CPIPipeline = CPIIdeal + Structural stalls + Data hazard stalls + Control stalls 

 
 Reduction of any right-hand term reduces CPIpipeline to CPIideal 

      or alternatively increase the Instructions Per Clock 

IPC = 1 / CPI 

 Best case: the max throughput would be to complete 1 

    Instruction Per Clock: 

IPCideal = 1; CPIideal = 1 



Instruction Level Parallelism 

Dept. of EEE,  Amrita School of Engineering 

 For typical MIPS programs, the average dynamic branch 

frequency is often between 15% and 25%. 

 

 Since these instructions are likely to depend upon one 

another, the amount of overlap that can be exploited within a 

basic block is likely to be less than the average basic block 

size.  

 

 To obtain substantial performance enhancements, ILP must 

be exploited across multiple basic blocks 

 

 Best way to increase ILP is to exploit parallelism among 

iterations of a loop - loop-level parallelism. 



Instruction Level Parallelism 
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 Example – Loop level parallelism 

 
  for (i=1; i<=1000; i++) 

       x[i] = x[i] + y[i]; 

 

 Computation in each iteration is independent of the previous 

iterations and the loop is thus parallel 

 

 Different techniques to convert loop-level parallelism into 

Instruction level parallelism. 

 


