
Pipeline Hazards

Dept. of EEE, Amrita School of Engineering

 Situations prevent the next instruction in the instruction

stream from executing during its designated clock cycle

– Hazards

 Reduces the performance from the ideal speedup

gained by pipelining

 classes of hazards
• Structural hazards - resource conflicts when the hardware

cannot support all possible combinations of instructions

simultaneously in overlapped execution.

• Data hazards - an instruction depends on the results of a

previous instruction in a way that is exposed by the overlapping

of instructions in the pipeline.

• Control hazards - pipelining of branches and other instructions

that change the PC.

Pipeline Hazards

Structural Hazards

Dept. of EEE, Amrita School of Engineering

Structural Hazards (contd)

Dept. of EEE, Amrita School of Engineering

Data Hazards

Dept. of EEE, Amrita School of Engineering

 Occurs when the pipeline changes the order of read/write

accesses to operands so that the order differs from the

order seen by sequentially executing instructions on an

unpipelined processor.

 Consider the execution of following instructions
DADD R1,R2,R3

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

 All instructions after DADD use the result of DADD

instruction

 DADD instruction writes value of R1 in the WB pipe stage,

but DSUB instruction reads the value during its ID stage.

 DSUB instruction will read the wrong value and try to use it.

Minimizing Data Hazard Stalls by Forwarding

Dept. of EEE, Amrita School of Engineering

 The problem can be solved with a simple hardware

technique called forwarding (also called bypassing).

 The key insight in forwarding is that the result is not really

needed by the DSUB until after the DADD actually

produces it.

 If the result can be moved from the pipeline register where

the DADD stores it to where the DSUB needs it, then the

need for a stall can be avoided.

 Forwarding can be generalized to include passing a result

directly to the functional unit that requires it.

Minimizing Data Hazard Stalls by Forwarding

Dept. of EEE, Amrita School of Engineering

Minimizing Data Hazard Stalls by Forwarding

Dept. of EEE, Amrita School of Engineering

Minimizing Data Hazard Stalls by Forwarding

Dept. of EEE, Amrita School of Engineering

 Consider the following sequence
DADD R1,R2,R3

LD R4,0(R1)

SD R4,12(R1)

 Result of the load is forwarded from the memory output to the

memory input to be stored

 ALU output is forwarded to ALU input for address calculation

of both the load and the store

Data Hazards Requiring Stalls

Dept. of EEE, Amrita School of Engineering

 Not all potential data hazards can be handled by bypassing

 Consider the following sequence
LD R1,0(R2)

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

 The LD instruction does not have the data until the end of

clock cycle 4 (its MEM cycle), while the DSUB instruction

needs to have the data by the beginning of that clock cycle.

 Data hazard from using the result of a load instruction cannot

be completely eliminated with simple hardware

Data Hazards Requiring Stalls

Dept. of EEE, Amrita School of Engineering

 Load instruction has a delay or latency that cannot be eliminated

by forwarding alone.

 Instead, a hardware is required to preserve the correct execution

pattern , called a pipeline interlock.

 Pipeline interlock detects a hazard and stalls the pipeline until the

hazard is cleared.

Data Hazards Requiring Stalls

Dept. of EEE, Amrita School of Engineering

 Interlock stalls the pipeline, beginning with the instruction that

wants to use the data until the source instruction produces it.

 Pipeline interlock introduces a stall or bubble like in structural

hazard.
LD R1,0(R2)

DSUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

Branch Hazards

Dept. of EEE, Amrita School of Engineering

 Control hazards cause a greater performance loss for MIPS

pipeline than do data hazards.

 When a branch is executed, it may or may not change the PC

to something other than its current value plus 4.

 If a branch changes the PC to its target address, it is a taken

branch;

 If a branch execution does not change the PC, it is not taken,

or untaken.

 If instruction i is a taken branch, then the PC is normally not

changed until the end of ID.

 Best way to handle branches is to redo the fetch of the

instruction following a branch, once detected during ID.

 The first IF cycle is essentially a stall, because it never

performs useful work.

 One stall cycle for every branch will yield a performance loss

of 10% to 30% depending on the branch frequency.

Branch Hazards

Dept. of EEE, Amrita School of Engineering

 Instruction after the branch is fetched, but the instruction is

ignored, and the fetch is restarted once the branch target is

known.

 If the branch is not taken, the second IF for branch

successor is redundant.

Reducing Pipeline Branch Penalties

Dept. of EEE, Amrita School of Engineering

 1) The simplest scheme to handle branches is to freeze or

flush the pipeline, holding or deleting any instructions after

the branch until the branch destination is known.

 In this case, Branch penalty is fixed and cannot be reduced

by software

 2) A higher-performance, and only slightly more complex,

scheme is to treat every branch as not taken, simply

allowing the hardware to continue as if the branch were not

executed.

 Processor state is not changed until the branch outcome is

definitely known.

Reducing Pipeline Branch Penalties

Dept. of EEE, Amrita School of Engineering

 In the simple five-stage pipeline, this predicted-not-taken or

predicted untaken scheme is implemented by continuing to

fetch instructions as if the branch were a normal instruction.

 The pipeline looks as if nothing out of the ordinary is

happening.

 If the branch is taken, fetched instruction is turned into a no-

op and restart the fetch at the target address.

Reducing Pipeline Branch Penalties

Dept. of EEE, Amrita School of Engineering

 3) An alternative scheme is to treat every branch as taken.

 As soon as the branch is decoded and the target address is

computed, assume the branch to be taken and begin

fetching and executing at the target.

 In five-stage pipeline, the target address is not known

earlier - there is no advantage in this approach

Reducing Pipeline Branch Penalties

Dept. of EEE, Amrita School of Engineering

 4) Delayed branch - technique heavily used in early RISC

processors and works well in five-stage pipeline

 execution cycle with branch delay of one
branch instruction

sequential successor1
branch target if taken

 sequential successor is in the branch delay slot and is

executed whether or not the branch is taken.

Scheduling the delay slots

Dept. of EEE, Amrita School of Engineering

i) From before – scheduled with an independent instruction from before the

 branch

becomes

Scheduling the delay slots

Dept. of EEE, Amrita School of Engineering

i) From before – scheduled with an independent instruction from before the

 branch

becomes

ii) From target – preferred when the branch is taken with high probability,

 such as a loop branch.

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 == 0 then

Branch delay slot

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 == 0 then

DSUB R4, R5, R6

Scheduling the delay slots

Dept. of EEE, Amrita School of Engineering

i) From before – scheduled with an independent instruction from before the

 branch

becomes

ii) From target – preferred when the branch is taken with high probability,

 such as a loop branch.

iii) the branch may be scheduled from the not-taken fall-through

DADD R1, R2, R3

if R1 == 0 then

 OR R7, R8, R9

DSUB R4, R5, R6

Branch delay slot

DADD R1, R2, R3

if R1 == 0 then

DSUB R4, R5, R6

OR R7, R8, R9

Scheduling the delay slots

Dept. of EEE, Amrita School of Engineering

 Limitations on delayed-branch scheduling arise from:
 restrictions on the instructions that are scheduled into the

delay slots

 ability to predict at compile time whether a branch is likely to

be taken or not

 To improve the ability of the compiler to fill branch delay

slots - canceling or nullifying branch

 When the branch behaves as predicted, the instruction in

the branch delay slot is executed as it would normally be

with a delayed branch.

 When the branch is incorrectly predicted, the instruction in

the branch delay slot is simply turned into a no-op.

Performance of Branch Schemes

Dept. of EEE, Amrita School of Engineering

MIPS Pipeline Implementation

Dept. of EEE, Amrita School of Engineering

Instruction Level Parallelism

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Instructions evaluated in parallel

 Sequential vs. Pipelining Execution

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Two approaches to exploit ILP
 Hardware based - dynamic

 Software (compiler) based - static

 In a pipelined machine, actual CPI is derived as:

CPIPipeline = CPIIdeal + Structural stalls + Data hazard stalls + Control stalls

 Reduction of any right-hand term reduces CPIpipeline to CPIideal

 or alternatively increase the Instructions Per Clock

IPC = 1 / CPI

 Best case: the max throughput would be to complete 1

 Instruction Per Clock:

IPCideal = 1; CPIideal = 1

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 For typical MIPS programs, the average dynamic branch

frequency is often between 15% and 25%.

 Since these instructions are likely to depend upon one

another, the amount of overlap that can be exploited within a

basic block is likely to be less than the average basic block

size.

 To obtain substantial performance enhancements, ILP must

be exploited across multiple basic blocks

 Best way to increase ILP is to exploit parallelism among

iterations of a loop - loop-level parallelism.

Instruction Level Parallelism

Dept. of EEE, Amrita School of Engineering

 Example – Loop level parallelism

 for (i=1; i<=1000; i++)

 x[i] = x[i] + y[i];

 Computation in each iteration is independent of the previous

iterations and the loop is thus parallel

 Different techniques to convert loop-level parallelism into

Instruction level parallelism.

