
Memory Hierarchy Design 



• The solution for need of unlimited amounts of fast 

memory, is memory hierarchy 

• It takes advantage of locality and cost-performance of 

memory technologies. 

• The principle of locality, says that most programs do 

not access all code or data uniformly 

• Locality occurs in time (temporal locality) and in 

space (spatial locality) 

• This principle guidelines that smaller hardware can be 

made faster, led to hierarchies based on memories of 

different speeds and sizes 
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Levels of Memory 
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Increasing 

distance 

from the 

processor in 

access time 

L1$ 

L2$ 

Main Memory 

Secondary  Memory 

Processor 

(Relative) size of the memory at each level 

Inclusive– what 

is in L1$ is a 

subset of what 

is in L2$  is a 

subset of what 

is in MM that is 

a subset of is 

in SM 

4-8 bytes (word) 

1 to 4 blocks 

1,024+ bytes (disk sector = page) 

8-32 bytes (block) 



Some Basics 

 
• Cache is the highest or first level of the memory hierarchy 

• When the processor find a requested data item in the cache, it 
is called cache hit and otherwise cache miss 

• A fixed size collection of data containing the requested word 
called a block 

• The time required for the cache miss depends on both the 
latency and BW of the memory 

• Latency determines the time to retrieve the first word of the 
block 

• BW determines the time to retrieve the rest of this block 

• Not all objects referenced by a program need to reside in main 
memory 

• Virtual memory means some objects may reside on disk 

7 



Locality of References 
 

• This important fundamental observation comes from 
properties of programs.  

• The most important program property that we regularly exploit 
is locality of references:  

• Programs tend to reuse data and instructions they have used 
recently.  

• 90/10 rule comes from empirical observation:  
"A program spends 90% of its time in 10% of its code"  

• An implication of locality is that we can predict with 
reasonable accuracy what instructions and data a program 
will use in the near future based on its accesses in the recent 
past.  

• Two different types of locality have been observed:  

– Temporal locality 

– Spatial locality 
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• Temporal locality items accessed recently are likely to be 
accessed again soon, so it is useful to place it in the 
cache where it can be accessed quickly 

• Keep most recently accessed data closer to processor. 

• Example: Instructions in a loop 

 int sum = 0;  

 for (int i = 0; i < n; i++)  

 {  

 sum += i;  

 } 
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• Spatial locality, items near those accessed recently are 
likely to be accessed soon 

• Move blocks of contiguous words to the upper levels. 

• Example: Array data  

 int sum = 0;  

 for (int i = 0; i < n; i++)  

 {  

 sum += a[i];  

 } 
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Cache Performance  

• Number of cycles during which the processor is stalled 

waiting for a memory access – memory stall cycle 

• Number of memory stall cycles depends on both the number 

of misses and the cost per miss – miss penalty 
 

• CPU execution time = (CPU clock cycles + Memory stall cycles) ×Clock cycle time 

• Memory stall cycles = Number of misses × Miss penalty  

       = IC × Misses / Instruction × Miss penalty  

       = IC × Memory Accesses/ Instruction × Miss rate ×Miss penalty  
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Cache design 
• Block Placement: 

– Where can a block be placed in the upper level? 

 

• Block Identification: 

– How is a block found if it is in the upper level? 

 

• Block Replacement: 

– Which block should be replaced on a miss? 

 

• Write Strategy: 

– What happens on a write? 
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Cache design - Block Placement 



Cache design - Block Placement 
• Three categories of cache organization 

– Direct Mapped 

• If each block has only one place it can appear in the cache 

• Mapping is usually  

 (Block address) MOD (Number of blocks in cache) 

 

 

 

 

– Fully associative 

• Block can be placed anywhere in the cache 
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– Set associative 

• If a block can be placed in a restricted set of places in the cache 

• A set is a group of blocks in the cache 

• A block is first mapped onto a set, and then the block can be 

placed anywhere within that set. 

• Set is chosen by bit selection 

  (Block address) MOD (Number of sets in cache) 

• If there are n blocks in a set, cache placement is n-way set 

associative 
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Cache design - Block Placement 



• Caches have address tag on each block frame that gives the block 

address 

• The tag is checked to see if it matches the block address from the 

processor 

• All possible tags are searched in parallel as speed is critical 

• A valid bit is added to the tag to say whether or not this entry 

contains a valid address. If the bit is not set, there cannot be a 

match on this address 
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Cache design - Block Identification 



• When a miss occurs, the cache controller must select a block 
to be replaced with the desired data 
 

• In a direct-mapped placement, only one block frame is 
checked for a hit, and only that block can be replaced 
 

• With fully-associative or set-associative placement, there are 
many blocks to choose from on a miss 
 

• Three primary strategies employed are: 
– Random – to spread allocation uniformly, candidate blocks are 

randomly selected.  

 

– Least-recently used (LRU) – to reduce the chance of throwing out 
information that will be needed soon, accesses to blocks are 
recorded. Relying on the past to predict the future, the block 
replaced is the one that has been unused for the longest time. 

 

– First-in, first-out (FIFO) – because LRU can be complicated to 
calculate, this approximates LRU by determining the oldest block 
rather than the LRU 
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Cache design - Block Replacement 



 

18 



• Reads dominate processor cache accesses. Of the data 

cache traffic, writes are 28%. 

• The block can be read from the cache at the same time 

that the tag is read and compared, so the block read begins 

as soon as the block address is available. 

• If the read is a hit, the requested block is passed on the 

processor immediately. If it is a miss, there is no benefit – 

just ignore the value read 

 

• Modifying a block can not begin until the tag is checked to 

see if the address is a hit 

• Because tag checking cannot occur in parallel, writes 

normally take longer than reads 

• Another complexity is the processor also specifies the size 

of the write, only that portion of the block can be changed 
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Cache design - Write Strategy 



• There are two basic options when writing to the cache: 
write-through and write-back.  
 Write-through – the information is written to both the block in the 

cache and to the block in the lower-level memory 

 Write-back – the information is written only to the block in the 

cache. The modified cache block is written to main memory only 

when it is replaced. 

 

• With write-back writes occur at the speed of the cache 

memory, and multiple writes within block require only 

one write to the lower level. Uses less memory BW 

making it suitable for multiprocessors 

 

• Write-through easy to implement; cache is always clean. 

Data coherency 
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Cache design - Write Strategy 



• Use write-back for processor caches to reduce the 

memory traffic and write-through to keep the cache 

consistent with the lower levels of memory hierarchy 

 

• When the processor must wait for writes to complete 

during write-through, the processor is said to write stall.  

 

• Write buffer allows the processor to continue as soon as 

the data are written to the buffer, thereby overlapping 

processor execution with memory updating 
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Cache design - Write Strategy 



Example – Opteron Data Cache 

• AMD Opteron microprocessor 

– Cache contains 64KB of data in 64-byte blocks with two-way set 

associative placement, least-recently used replacement. 
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Cache Performance 

• A better measure is the average memory access time. 

  

     Average memory access time=Hit time + Miss rate*Miss penalty. 

 

 where Hit time – is the time to hit in the cache 

    Miss penalty – is the time to replace the block from 

memory 

• It is an indirect measure of performance, although it is a 

better measure than miss rate 
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Six Basic Cache Optimizations 
• Three categories  

– Reducing Miss rate 

• Larger block size 

• Larger cache size 

• Higher associativity 

– Reducing the miss penalty 

• Multilevel caches 

• Giving reads priority over writes 

– Reducing the time to hit in the cache 

• Avoiding address translation when indexing the cache 
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• Three Cs model – all misses are sort into three categories: 

– Compulsory – It is a cache miss that occurs because the 
desired data was never in the cache. The very first access to 
a block cannot be in the cache, so the block must be brought 
into the cache. Compulsory misses are those that occur even 
if we have infinite cache 

– Capacity – if the cache cannot contain all the blocks needed 
during execution of a program, capacity misses will occur 
because of blocks being discarded and later retrieved 

– Conflict – if the block placement strategy is not fully 
associative, conflict misses will occur because a block may 
be discarded and later retrieved if conflicting blocks map to its 
set 

– Coherency miss 
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Six Basic Cache Optimizations 



1.  Larger block size to reduce miss rate  

 – the simplest way to reduce the miss rate is to take advantage 
of spatial locality and increase the block size. Larger blocks 
also reduces compulsory misses, but they increase the miss 
penalty  

2. Bigger caches to reduce miss rate  

 - the way to reduce capacity misses is to increase cache 
capacity. Drawbacks include potentially longer hit time of the 
larger cache memory and higher cost and power 

3. Higher associativity to reduce miss rate  

 - increasing associativity reduces conflict misses. Greater 
associativity can come at the cost of increased hit time 

4. Multilevel caches to reduce miss penalty 

  - a conflicting decision is whether to make the cache hit  

  timefast, to keep pace with increased clock rate of processors  

  or to make the cache large, to reduce the gap between the  

  original cache and main memory? The solution is – adding  

  another level of cache.  

 
26 

Six Basic Cache Optimizations 



The first-level cache can be small enough to match a fast  

clock cycle time, yet the second level cache can be large  

enough to capture many accesses that would go to main  

memory 

Average memory access time = Hit time L1 + Miss rate L1* (Hit 
time L2 + Miss rate L2 * Miss penalty L2) 

 

5. Giving priority to read misses over writes to reduce miss penalty 

 - it is implemented in a write buffer. Write buffers creates 
hazards because they hold the updated value of a location 
needed on a read miss (RAW). One solution is to check the 
contents of the write buffer on a  read miss. If there are no 
conflicts and the if the memory system is available, sending the 
read before the writes reduces the miss penalty.  

6. Avoiding address translation during indexing of the cache to 
reduce hit time 

 - caches must cope with the translation of a virtual address from 
the processor to a physical address to access memory. The 
drawback of virtually indexed, physically tagged optimization is 
that the size of the page limits the size of the cache. Direct-
mapped cache can be no longer bigger than the page size.  
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• Six basic cache optimizations: 
– Larger block size 

• Reduces compulsory misses 

• Increases capacity and conflict misses, increases miss penalty 

– Larger total cache capacity to reduce miss rate 
• Increases hit time, increases power consumption 

– Higher associativity 
• Reduces conflict misses 

• Increases hit time, increases power consumption 

– Higher number of cache levels 
• Reduces overall memory access time 

– Giving priority to read misses over writes 
• Reduces miss penalty 

– Avoiding address translation in cache indexing 
• Reduces hit time 



Ten advanced optimizations of 

cache performance 
Opt.1: small and simple first-level caches to reduce 

hit time and power 
• The time consuming portion of a cache hit is using the 

index portion of the address to read the tag memory and 
then compare it to the address 

• Smaller hardware can be faster, so a small cache can help 
the hit time 

• It is also critical to keep an L2 cache small enough to fit on 
the same chip as the processor to avoid the time penalty of 
going off chip 

• Next suggestion is to keep the cache simple, such as using 
direct mapping. 

• Advantage of direct mapped cache is that we can overlap 
the tag check with the transmission of the data. This 
effectively reduces the hit time 

• Hence, the fast clock cycle encourages small and simple 
cache designs for the first–level caches 

29 



Opt.2: Way Prediction to reduce hit time 

 
• Another approach reduces conflict misses and yet 

maintains the hit time speed of direct-mapped cache 

• In way-prediction, extra bits are kept in the cache to 
predict the way or block within the set of the next cache 
access. 

• This prediction means the multiplexer is set early to 
select the desired clock, and only a single tag 
comparison is performed that clock cycle in parallel with 
reading the cache data 

• A miss results in checking the other blocks for matches 
in the next clock cycle 

• Added to each block of a cache are block predictor bits 

• The bits select which of the blocks to try on the next 
cache access 
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• If the predictor is correct, the cache access 
latency is the fast hit time 

• If not, it tries the other block, changes the way 
predictor, and has a latency of one extra clock 
cycle 

• Simulations suggested set prediction accuracy is 
in excess of 90% for a two-way set, so a way 
prediction saves pipeline stages more than 90% 
of the time 

• Way prediction is a good match to speculative 
processors, since they must already undo 
actions when speculation is unsuccessful 
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Opt.3: Pipelined cache access to 

increase cache bandwidth 

 

 This optimization is to pipeline cache access so 

that the effective latency of a first-level cache hit 

can be multiple clock cycles, giving fast clock 

cycle time and high bandwidth 

 

32 



Opt.4: Non-blocking caches to increase cache bandwidth 
 
 

• For pipelined computers that allow out-of-order completion, 
the processor need not stall on a data cache miss 

• Eg. The processor could continue fetching instructions from 
the instruction cache while waiting for the data cache to return 
the missing data 

• A non-blocking cache or lockup-free cache escalates the 
potential benefits of such a scheme by allowing the data 
cache to continue to supply cache hits during a miss 

• This hit under miss optimization reduces the effective  miss 
penalty by being helpful during a miss instead of ignoring the 
requests of the processor 

• The cache may further lower the effective miss penalty if it 
can overlap multiple misses: a ‘hit under multiple miss’ or 
‘miss under miss’ optimization. 
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Opt.5: Multibanked caches to increase cache 
bandwidth 

 
• Rather than treat the cache as a single monolithic block, 

we can divide it into independent banks that can support 
simultaneous accesses 

• Banks were originally used to improve performance of 
main memory and are now used inside modern DRAM 
chips as well as with caches 

• Banking works best when the accesses naturally spread 
themselves across the banks, so the mapping of 
addresses to banks affects the behavior of the memory 
system 

• A simple mapping that spread the addresses of the block 
sequentially across the banks are called sequential 
interleaving 
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Opt.6: Critical word first and early restart to reduce miss 
penalty 

 
• This technique is based on the observation that the 

processor normally needs just one word of the block at a 
time 

• This strategy is impaatience: don’t wait for the full block to 
be loaded before sending the requested word and 
restarting the processor 

• There are two specific strategies: 

– Critical word first – request the missed word first from 
the memory and send it to the processor as soon as it 
arrives; let the processor continue execution while filling 
the rest of the words in the block 

– Early restart – fetch the words in normal order, but as 
soon as the requested word of the block arrives, send it 
to the processor and let the processor continue 
execution 

• These techniques only benefits designs with large cache 
blocks 
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• Caches normally continue to satisfy accesses to 
other blocks while the rest of the block is being 
filled 

• Given spatial locality, there is a good chance 
that the next reference is to the rest of the block 

• Just as with non-blocking caches, the miss 
penalty is not simple to calculate 

• When there is a second request in critical word 
first, the effective miss penalty is the non-
overlapped time from the reference until the 
second piece arrives 

• The benefits of critical word first and early restart 
depends on the size of the block and the 
likelihood of another access to the portion of the 
block that has not yet been fetched 
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Opt.7: Merging write buffer to reduce miss penalty 

 

• Write-through caches rely on write buffers, as all stores 

must be sent to the next lower level of the hierarchy 

• Even write-back cache use a simple buffer when a block 

is replaced 

• If the write buffer is empty, the data and the full address 

are written in the buffer and the write is finished from 

processor’s perspective; the processor continues 

working while write buffer prepares to write the word to 

memory 

• If the buffer contains other modified blocks, the 

addresses can be checked to see if the address of this 

new data matches the address of a valid write buffer 

entry 
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• If so, the new data are combined with that entry 

• Write merging is the name of this optimization 

• If the buffer is full and there is no address match, 

the cache must wait until the buffer has an 

empty entry. 

• This optimization uses the memory more 

effectively since multiword writes are usually 

faster than writes performed one word at a time 

• This optimization also reduces stalls due to the 

write buffer being full 
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Opt.8: Compiler optimizations to reduce miss rate 

 
• So far, the techniques have required changing the hardware.  

• This technique reduces miss rate without any hardware changes 

• Code and data rearrangement 

• Code can easily be rearranged without affecting correctness 

• Reordering the procedures of a program might reduce instruction 

miss rates by reducing conflict misses 

• Aligning basic blocks so that the entry point at the beginning of a 

cache block decreases the chance of a cache miss for sequential 

code 

• If the compiler knows that a branch is likely to be taken, it can 

improve spatial locality by changing the sense of the branch and 

swapping the basic block at the branch target with the basic 

block sequentially after the branch 

• Branch straightening is the name of this optimization  
• Data have even fewer restrictions on location than code 

• The goal of such transformations is to try to improve the spatial and 
temporal locality of the data 
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Opt.9: Hardware prefetching of instructions and data to 

reduce miss penalty or miss rate 

 

• Non-blocking caches effectively reduces the miss 

penalty by overlapping execution with memory access 

• Another approach is to prefetch items before the 

processor requests them 

• Both instruction and data can be prefetched either 

directly into the caches or into an external buffer that can 

be more quickly accessed than main memory 

• Instruction prefetch is frequently done in hardware 

outside of the cache 

• Typically a processor fetches two blocks on a miss: the 

requested block and the next consecutive block 
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• The requested block is placed in the instruction cache 

when it returns, and the prefetched block is placed into 

the instruction stream buffer 

• If the requested block is present in the instruction stream 

buffer, the original cache request is cancelled, and the 

block is read from the stream buffer and the next 

prefetch request is issued 

• Prefetching relies on utilizing memory bandwidth that 

otherwise would be unused 

• But it interferes  with demand misses, it can actually 

lower performance 

• Help from compilers can reduce useless prefetching 
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Opt.10: Compile controller prefetching to reduce miss 

penalty or miss rate 

• An alternative to hardware prefetching is for the compiler 

to insert prefetch instructions to request data before the 

processor needs it 

• There are two flavors of prefetch: 

• Register prefetch – will load the value into a register 

• Cache prefetch – loads data only into the cache and not 

the register 

• Either of these can be faulting or nonfaulting: that is the 

address does or does not cause an exception for virtual 

address faults and protection violations.  

• The most effective prefetch is ‘semantically invisible’ to a 

program 

• It doesnot change the contents of registers and memory 

and can not cause virtual memory faults 42 



• Prefetching makes sense only if the processor 

can proceed while prefetching the data; that is, 

the caches do not stall but continue to supply 

instructions and data; while waiting for the 

prefetched data to return 

• Like hardware controlled prefetching, the goal is 

to overlap execution with the prefetching of data 

• Loops are the important targets, as they lend 

themselves to prefetch optimizations 

• If the miss penalty is small, the compiler just 

unrolls the loop once or twice, and it schedules 

the prefetches with the execution 
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Summary 
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Memory Technology 

• Performance metrics 
– Latency is concern of cache 

– Bandwidth is concern of multiprocessors and I/O 

– Access time 
• Time between read request and when desired word 

arrives 

– Cycle time 
• Minimum time between unrelated requests to memory 

 

• DRAM used for main memory, SRAM used 
for cache 



Memory Technology 

• SRAM 
– Requires low power to retain bit 

– Requires 6 transistors/bit 

 

• DRAM 
– Must be re-written after being read 

– Must also be periodically refreshed 
• Every ~ 8 ms 

• Each row can be refreshed simultaneously 

– One transistor/bit 

– Address lines are multiplexed: 
• Upper half of address:  row access strobe (RAS) 

• Lower half of address:  column access strobe (CAS) 

 



Memory Technology 

• Amdahl: 
– Memory capacity should grow linearly with processor speed 

– Unfortunately, memory capacity and speed has not kept 
pace with processors 

 

• Some optimizations: 
– Multiple accesses to same row 

– Synchronous DRAM 

• Added clock to DRAM interface 

• Burst mode with critical word first 

– Wider interfaces 

– Double data rate (DDR) 

– Multiple banks on each DRAM device 



Memory Optimizations 

• DDR: 
– DDR2 

• Lower power (2.5 V -> 1.8 V) 

• Higher clock rates (266 MHz, 333 MHz, 400 MHz) 

– DDR3 
• 1.5 V 

• 800 MHz 

– DDR4 
• 1-1.2 V 

• 1600 MHz 

 

• GDDR5 is graphics memory based on DDR3 



Memory Optimizations 

• Graphics memory: 
– Achieve 2-5 X bandwidth per DRAM vs. DDR3 

• Wider interfaces (32 vs. 16 bit) 

• Higher clock rate 
– Possible because they are attached via soldering instead of 

socketted DIMM modules 

 

• Reducing power in SDRAMs: 
– Lower voltage 

– Low power mode (ignores clock, continues to 
refresh) 



Flash Memory 

• Type of EEPROM 

• Must be erased (in blocks) before being 
overwritten 

• Non volatile 

• Limited number of write cycles 

• Cheaper than SDRAM, more expensive than 
disk 

• Slower than SRAM, faster than disk 
 

 



Memory Dependability 

• Memory is susceptible to cosmic rays 

• Soft errors:  dynamic errors 
– Detected and fixed by error correcting codes 

(ECC) 

• Hard errors:  permanent errors 
– Use sparse rows to replace defective rows 

 

• Chipkill:  a RAID-like error recovery technique 



Virtual Memory & Virtual Machines 
• Security and privacy are two of the most challenges for 

information technology 

• Virtual memory provides an architectural support for 

protecting processes from each other 

Protection via virtual memory 

• Page based virtual memory, including a translation look 

aside buffer that caches page table entries, is the 

primary mechanism that protects processes form each 

other 

• When computers are running multiple processes, it 

would be too expensive to dedicate a full address space 

worth of memory for each process. Hence there must be 

a means of sharing a smaller amount of physical 

memory among many processes 52 



• One way to do this is by virtual memory (VM) 

• It divides physical memory into blocks and 

allocates them to different processes 

• Inherent in such an approach must be a 

protection scheme that restricts a process to the 

blocks belonging only to that process 

• Most forms of virtual memory also reduce the 

time to start a program, since not all the code 

and data need be in physical memory before a 

program can begin 

• Although VM provides protection, sharing is not 

the reason that VM was invented 
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• VM was invented to relieve programmers of their 

burden to fit in the code in the available physical 

memory of the computer appropriately 

• It automatically manages the two levels of the 

memory hierarchy represented by main memory 

and secondary storage 

• In addition to sharing protected memory space 

and automatically managing the memory 

hierarchy, VM also simplifies loading the 

program for execution 

• Called relocation, this mechanism allows the 

same program to run in any location in physical 

memory 
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Virtual memory 

• Virtual memory divides physical memory into blocks and 

allocates them to different processes. 

• With virtual memory, each process has its own address 

space. 

• In most modern microprocessors intended for general-

purpose use, a memory management unit, or MMU, is built 

into the hardware.  

• The MMU's job is to translate virtual addresses into 

physical addresses. 

• a program runs in a process, and each process has its 

own virtual memory space. 

• The unit exchanged between memory and disc is called a 

page 
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Virtual address space 
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• The address produced by the processor is called 

a virtual address 

• This gets translated by a MMU via a page table 

into a physical address (PT hit) or page fault (PT 

miss) 

• This mapping process is called address 

translation or memory mapping 

• Two classes 

– Fixed size blocks called pages 

– Variable size blocks called segments 
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• Several general memory hierarchy ideas about 
caches are analogous to VM 

• Page or segment is used for a block 

• Page fault or address fault is used for a miss 

• With VM, the processor produces virtual 
addresses that are translated by a combination 
of hardware and software to physical addresses, 
which access main memory 

• This process is called memory mapping or 
address translation 

• Replacement on cache miss is primarily 
controlled by hardware, while VM replacement is 
controlled by OS 
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• The size of the processor address determines the size of 

the VM, but the cache size is independent of the 

processor address size 

• VM systems can be categorized into two classes: 

• Those with fixed size blocks called – pages (fixed at 

4096 to 8192 bytes) 

• Those with variable size blocks – segments (size varies 

– 1byte to 232 bytes) 
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• Paged Virtual Memory – memory divided into fixed sized 

pages  

– each page has a base physical address 

• Segmented Virtual Memory – memory is divided into 

variable length segments  

– each segment has a base pysical address + length 

60 

Paged Vs Segmented Virtual Memory  
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Page Table 

• Viritual memory is usually done by dividing memory up 

into pages 

• Data structure indexed by the page or segment number 

• For segmentation – offset added to segment’s physical 

address to obtain final physical address 

• For paging – offset concatenated to physical page 

address 

• data structure that holds the mapping from virtual to 

physical addresses – page table 

• The page frame is the actual physical storage in 

memory. 
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Techniques for Fast Address Translation 

• Page tables are stored in the main memory, each memory access of 

a program requires at least one memory accesses to translate 

virtual into physical address. 

• On the cache miss, there will be two memory accesses.  

• When a translation for a virtual page is used, it will probably be 

needed again in the near future because the references to the words 

on that page have both temporal and spatial locality. 

• Each virtual memory reference can cause two physical memory 

accesses :  

 -One to fetch the page table. 

 -One to fetch the data. 

• To overcome this problem a high-speed cache is set up for page 

table entries called a Translation Lookaside Buffer (TLB).  

• TLB is a special cache used to keep track of recently used 

transactions.  
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• When a virtual memory address is referenced by a program, the 

search starts in the CPU.  

• First, instruction caches are checked.  

• If the required memory is not in these very fast caches, the system 

has to look up the memory’s physical address.  

• At this point, TLB is checked for a quick reference to the location in 

physical memory. 
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• Paged virtual memory access logically takes at least 

twice as long, with one memory access to obtain the 

physical address and second access to get the data 

• The solution is to rely on the principle of locality 

• If accesses have locality, then the address 

translations also must have locality 

• By keeping these address translations in a spatial 

cache, a memory access rarely requires a second 

access to translate the data 

• This special address translation cache is referred to 

as TLB 

• A TLB entry is like a cache entry where the tag 

holds portion of the virtual address and the data 

portion holds a physical page address, protection 

field, valid bit and usually a use bit and a dirty bit 66 



• The OS changes these bits by changing the 

value in the page table and then validating the 

corresponding TLB entry 

• When the entry is reloaded from the page table, 

the TLB gets an accurate copy of bits 

• The computer then maps virtual addresses to 

physical addresses 

Protection via virtual machines 

• The broadest definition of VM includes basically 

all emulation methods that provide a standard 

software interface, such as the Java VM 

• A single computer runs multiple VMs and can 

support a no. of different OSes. 
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• On a conventional platform, a single OS ‘owns’ all 

the hardware resources, but with a VM, multiple 

Oses all share the hardware resources 

• The software that supports VM is called a virtual 

machine monitor (VMM) 

• The VMM is the heart of the VM technology 

• The underlying hardware platform is called the host, 

and its resources are shared among the guest VMs 

• The VMM determines how to map virtual resources 

to physical resources 

• A physical resource may be time shared, 

partitioned.. 

• The VMM is much smaller than the traditional OS 

• The VM provides two other benefits: Managing 

software and Managing hardware 68 
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