
Memory Hierarchy Design

• The solution for need of unlimited amounts of fast

memory, is memory hierarchy

• It takes advantage of locality and cost-performance of

memory technologies.

• The principle of locality, says that most programs do

not access all code or data uniformly

• Locality occurs in time (temporal locality) and in

space (spatial locality)

• This principle guidelines that smaller hardware can be

made faster, led to hierarchies based on memories of

different speeds and sizes

2

Levels of Memory

3

Levels of Memory

4

Levels of Memory

5

6

Increasing

distance

from the

processor in

access time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive– what

is in L1$ is a

subset of what

is in L2$ is a

subset of what

is in MM that is

a subset of is

in SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

Some Basics

• Cache is the highest or first level of the memory hierarchy

• When the processor find a requested data item in the cache, it
is called cache hit and otherwise cache miss

• A fixed size collection of data containing the requested word
called a block

• The time required for the cache miss depends on both the
latency and BW of the memory

• Latency determines the time to retrieve the first word of the
block

• BW determines the time to retrieve the rest of this block

• Not all objects referenced by a program need to reside in main
memory

• Virtual memory means some objects may reside on disk

7

Locality of References

• This important fundamental observation comes from
properties of programs.

• The most important program property that we regularly exploit
is locality of references:

• Programs tend to reuse data and instructions they have used
recently.

• 90/10 rule comes from empirical observation:
"A program spends 90% of its time in 10% of its code"

• An implication of locality is that we can predict with
reasonable accuracy what instructions and data a program
will use in the near future based on its accesses in the recent
past.

• Two different types of locality have been observed:

– Temporal locality

– Spatial locality

8

• Temporal locality items accessed recently are likely to be
accessed again soon, so it is useful to place it in the
cache where it can be accessed quickly

• Keep most recently accessed data closer to processor.

• Example: Instructions in a loop

 int sum = 0;

 for (int i = 0; i < n; i++)

 {

 sum += i;

 }

9

• Spatial locality, items near those accessed recently are
likely to be accessed soon

• Move blocks of contiguous words to the upper levels.

• Example: Array data

 int sum = 0;

 for (int i = 0; i < n; i++)

 {

 sum += a[i];

 }

10

Cache Performance

• Number of cycles during which the processor is stalled

waiting for a memory access – memory stall cycle

• Number of memory stall cycles depends on both the number

of misses and the cost per miss – miss penalty

• CPU execution time = (CPU clock cycles + Memory stall cycles) ×Clock cycle time

• Memory stall cycles = Number of misses × Miss penalty

 = IC × Misses / Instruction × Miss penalty

 = IC × Memory Accesses/ Instruction × Miss rate ×Miss penalty

11

Cache design
• Block Placement:

– Where can a block be placed in the upper level?

• Block Identification:

– How is a block found if it is in the upper level?

• Block Replacement:

– Which block should be replaced on a miss?

• Write Strategy:

– What happens on a write?

12

13

Cache design - Block Placement

Cache design - Block Placement
• Three categories of cache organization

– Direct Mapped

• If each block has only one place it can appear in the cache

• Mapping is usually

 (Block address) MOD (Number of blocks in cache)

– Fully associative

• Block can be placed anywhere in the cache

14

– Set associative

• If a block can be placed in a restricted set of places in the cache

• A set is a group of blocks in the cache

• A block is first mapped onto a set, and then the block can be

placed anywhere within that set.

• Set is chosen by bit selection

 (Block address) MOD (Number of sets in cache)

• If there are n blocks in a set, cache placement is n-way set

associative

15

Cache design - Block Placement

• Caches have address tag on each block frame that gives the block

address

• The tag is checked to see if it matches the block address from the

processor

• All possible tags are searched in parallel as speed is critical

• A valid bit is added to the tag to say whether or not this entry

contains a valid address. If the bit is not set, there cannot be a

match on this address

16

Cache design - Block Identification

• When a miss occurs, the cache controller must select a block
to be replaced with the desired data

• In a direct-mapped placement, only one block frame is
checked for a hit, and only that block can be replaced

• With fully-associative or set-associative placement, there are
many blocks to choose from on a miss

• Three primary strategies employed are:
– Random – to spread allocation uniformly, candidate blocks are

randomly selected.

– Least-recently used (LRU) – to reduce the chance of throwing out
information that will be needed soon, accesses to blocks are
recorded. Relying on the past to predict the future, the block
replaced is the one that has been unused for the longest time.

– First-in, first-out (FIFO) – because LRU can be complicated to
calculate, this approximates LRU by determining the oldest block
rather than the LRU

17

Cache design - Block Replacement

18

• Reads dominate processor cache accesses. Of the data

cache traffic, writes are 28%.

• The block can be read from the cache at the same time

that the tag is read and compared, so the block read begins

as soon as the block address is available.

• If the read is a hit, the requested block is passed on the

processor immediately. If it is a miss, there is no benefit –

just ignore the value read

• Modifying a block can not begin until the tag is checked to

see if the address is a hit

• Because tag checking cannot occur in parallel, writes

normally take longer than reads

• Another complexity is the processor also specifies the size

of the write, only that portion of the block can be changed

 19

Cache design - Write Strategy

• There are two basic options when writing to the cache:
write-through and write-back.
 Write-through – the information is written to both the block in the

cache and to the block in the lower-level memory

 Write-back – the information is written only to the block in the

cache. The modified cache block is written to main memory only

when it is replaced.

• With write-back writes occur at the speed of the cache

memory, and multiple writes within block require only

one write to the lower level. Uses less memory BW

making it suitable for multiprocessors

• Write-through easy to implement; cache is always clean.

Data coherency

20

Cache design - Write Strategy

• Use write-back for processor caches to reduce the

memory traffic and write-through to keep the cache

consistent with the lower levels of memory hierarchy

• When the processor must wait for writes to complete

during write-through, the processor is said to write stall.

• Write buffer allows the processor to continue as soon as

the data are written to the buffer, thereby overlapping

processor execution with memory updating

21

Cache design - Write Strategy

Example – Opteron Data Cache

• AMD Opteron microprocessor

– Cache contains 64KB of data in 64-byte blocks with two-way set

associative placement, least-recently used replacement.

22

Cache Performance

• A better measure is the average memory access time.

 Average memory access time=Hit time + Miss rate*Miss penalty.

 where Hit time – is the time to hit in the cache

 Miss penalty – is the time to replace the block from

memory

• It is an indirect measure of performance, although it is a

better measure than miss rate

23

Six Basic Cache Optimizations
• Three categories

– Reducing Miss rate

• Larger block size

• Larger cache size

• Higher associativity

– Reducing the miss penalty

• Multilevel caches

• Giving reads priority over writes

– Reducing the time to hit in the cache

• Avoiding address translation when indexing the cache

24

• Three Cs model – all misses are sort into three categories:

– Compulsory – It is a cache miss that occurs because the
desired data was never in the cache. The very first access to
a block cannot be in the cache, so the block must be brought
into the cache. Compulsory misses are those that occur even
if we have infinite cache

– Capacity – if the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur
because of blocks being discarded and later retrieved

– Conflict – if the block placement strategy is not fully
associative, conflict misses will occur because a block may
be discarded and later retrieved if conflicting blocks map to its
set

– Coherency miss

25

Six Basic Cache Optimizations

1. Larger block size to reduce miss rate

 – the simplest way to reduce the miss rate is to take advantage
of spatial locality and increase the block size. Larger blocks
also reduces compulsory misses, but they increase the miss
penalty

2. Bigger caches to reduce miss rate

 - the way to reduce capacity misses is to increase cache
capacity. Drawbacks include potentially longer hit time of the
larger cache memory and higher cost and power

3. Higher associativity to reduce miss rate

 - increasing associativity reduces conflict misses. Greater
associativity can come at the cost of increased hit time

4. Multilevel caches to reduce miss penalty

 - a conflicting decision is whether to make the cache hit

 timefast, to keep pace with increased clock rate of processors

 or to make the cache large, to reduce the gap between the

 original cache and main memory? The solution is – adding

 another level of cache.

26

Six Basic Cache Optimizations

The first-level cache can be small enough to match a fast

clock cycle time, yet the second level cache can be large

enough to capture many accesses that would go to main

memory

Average memory access time = Hit time L1 + Miss rate L1* (Hit
time L2 + Miss rate L2 * Miss penalty L2)

5. Giving priority to read misses over writes to reduce miss penalty

 - it is implemented in a write buffer. Write buffers creates
hazards because they hold the updated value of a location
needed on a read miss (RAW). One solution is to check the
contents of the write buffer on a read miss. If there are no
conflicts and the if the memory system is available, sending the
read before the writes reduces the miss penalty.

6. Avoiding address translation during indexing of the cache to
reduce hit time

 - caches must cope with the translation of a virtual address from
the processor to a physical address to access memory. The
drawback of virtually indexed, physically tagged optimization is
that the size of the page limits the size of the cache. Direct-
mapped cache can be no longer bigger than the page size.

27

• Six basic cache optimizations:
– Larger block size

• Reduces compulsory misses

• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

– Higher associativity
• Reduces conflict misses

• Increases hit time, increases power consumption

– Higher number of cache levels
• Reduces overall memory access time

– Giving priority to read misses over writes
• Reduces miss penalty

– Avoiding address translation in cache indexing
• Reduces hit time

Ten advanced optimizations of

cache performance
Opt.1: small and simple first-level caches to reduce

hit time and power
• The time consuming portion of a cache hit is using the

index portion of the address to read the tag memory and
then compare it to the address

• Smaller hardware can be faster, so a small cache can help
the hit time

• It is also critical to keep an L2 cache small enough to fit on
the same chip as the processor to avoid the time penalty of
going off chip

• Next suggestion is to keep the cache simple, such as using
direct mapping.

• Advantage of direct mapped cache is that we can overlap
the tag check with the transmission of the data. This
effectively reduces the hit time

• Hence, the fast clock cycle encourages small and simple
cache designs for the first–level caches

29

Opt.2: Way Prediction to reduce hit time

• Another approach reduces conflict misses and yet

maintains the hit time speed of direct-mapped cache

• In way-prediction, extra bits are kept in the cache to
predict the way or block within the set of the next cache
access.

• This prediction means the multiplexer is set early to
select the desired clock, and only a single tag
comparison is performed that clock cycle in parallel with
reading the cache data

• A miss results in checking the other blocks for matches
in the next clock cycle

• Added to each block of a cache are block predictor bits

• The bits select which of the blocks to try on the next
cache access

30

• If the predictor is correct, the cache access
latency is the fast hit time

• If not, it tries the other block, changes the way
predictor, and has a latency of one extra clock
cycle

• Simulations suggested set prediction accuracy is
in excess of 90% for a two-way set, so a way
prediction saves pipeline stages more than 90%
of the time

• Way prediction is a good match to speculative
processors, since they must already undo
actions when speculation is unsuccessful

31

Opt.3: Pipelined cache access to

increase cache bandwidth

 This optimization is to pipeline cache access so

that the effective latency of a first-level cache hit

can be multiple clock cycles, giving fast clock

cycle time and high bandwidth

32

Opt.4: Non-blocking caches to increase cache bandwidth

• For pipelined computers that allow out-of-order completion,
the processor need not stall on a data cache miss

• Eg. The processor could continue fetching instructions from
the instruction cache while waiting for the data cache to return
the missing data

• A non-blocking cache or lockup-free cache escalates the
potential benefits of such a scheme by allowing the data
cache to continue to supply cache hits during a miss

• This hit under miss optimization reduces the effective miss
penalty by being helpful during a miss instead of ignoring the
requests of the processor

• The cache may further lower the effective miss penalty if it
can overlap multiple misses: a ‘hit under multiple miss’ or
‘miss under miss’ optimization.

33

Opt.5: Multibanked caches to increase cache
bandwidth

• Rather than treat the cache as a single monolithic block,

we can divide it into independent banks that can support
simultaneous accesses

• Banks were originally used to improve performance of
main memory and are now used inside modern DRAM
chips as well as with caches

• Banking works best when the accesses naturally spread
themselves across the banks, so the mapping of
addresses to banks affects the behavior of the memory
system

• A simple mapping that spread the addresses of the block
sequentially across the banks are called sequential
interleaving

34

Opt.6: Critical word first and early restart to reduce miss
penalty

• This technique is based on the observation that the

processor normally needs just one word of the block at a
time

• This strategy is impaatience: don’t wait for the full block to
be loaded before sending the requested word and
restarting the processor

• There are two specific strategies:

– Critical word first – request the missed word first from
the memory and send it to the processor as soon as it
arrives; let the processor continue execution while filling
the rest of the words in the block

– Early restart – fetch the words in normal order, but as
soon as the requested word of the block arrives, send it
to the processor and let the processor continue
execution

• These techniques only benefits designs with large cache
blocks

35

• Caches normally continue to satisfy accesses to
other blocks while the rest of the block is being
filled

• Given spatial locality, there is a good chance
that the next reference is to the rest of the block

• Just as with non-blocking caches, the miss
penalty is not simple to calculate

• When there is a second request in critical word
first, the effective miss penalty is the non-
overlapped time from the reference until the
second piece arrives

• The benefits of critical word first and early restart
depends on the size of the block and the
likelihood of another access to the portion of the
block that has not yet been fetched

36

Opt.7: Merging write buffer to reduce miss penalty

• Write-through caches rely on write buffers, as all stores

must be sent to the next lower level of the hierarchy

• Even write-back cache use a simple buffer when a block

is replaced

• If the write buffer is empty, the data and the full address

are written in the buffer and the write is finished from

processor’s perspective; the processor continues

working while write buffer prepares to write the word to

memory

• If the buffer contains other modified blocks, the

addresses can be checked to see if the address of this

new data matches the address of a valid write buffer

entry

37

• If so, the new data are combined with that entry

• Write merging is the name of this optimization

• If the buffer is full and there is no address match,

the cache must wait until the buffer has an

empty entry.

• This optimization uses the memory more

effectively since multiword writes are usually

faster than writes performed one word at a time

• This optimization also reduces stalls due to the

write buffer being full

38

Opt.8: Compiler optimizations to reduce miss rate

• So far, the techniques have required changing the hardware.

• This technique reduces miss rate without any hardware changes

• Code and data rearrangement

• Code can easily be rearranged without affecting correctness

• Reordering the procedures of a program might reduce instruction

miss rates by reducing conflict misses

• Aligning basic blocks so that the entry point at the beginning of a

cache block decreases the chance of a cache miss for sequential

code

• If the compiler knows that a branch is likely to be taken, it can

improve spatial locality by changing the sense of the branch and

swapping the basic block at the branch target with the basic

block sequentially after the branch

• Branch straightening is the name of this optimization
• Data have even fewer restrictions on location than code

• The goal of such transformations is to try to improve the spatial and
temporal locality of the data

39

Opt.9: Hardware prefetching of instructions and data to

reduce miss penalty or miss rate

• Non-blocking caches effectively reduces the miss

penalty by overlapping execution with memory access

• Another approach is to prefetch items before the

processor requests them

• Both instruction and data can be prefetched either

directly into the caches or into an external buffer that can

be more quickly accessed than main memory

• Instruction prefetch is frequently done in hardware

outside of the cache

• Typically a processor fetches two blocks on a miss: the

requested block and the next consecutive block

40

• The requested block is placed in the instruction cache

when it returns, and the prefetched block is placed into

the instruction stream buffer

• If the requested block is present in the instruction stream

buffer, the original cache request is cancelled, and the

block is read from the stream buffer and the next

prefetch request is issued

• Prefetching relies on utilizing memory bandwidth that

otherwise would be unused

• But it interferes with demand misses, it can actually

lower performance

• Help from compilers can reduce useless prefetching

41

Opt.10: Compile controller prefetching to reduce miss

penalty or miss rate

• An alternative to hardware prefetching is for the compiler

to insert prefetch instructions to request data before the

processor needs it

• There are two flavors of prefetch:

• Register prefetch – will load the value into a register

• Cache prefetch – loads data only into the cache and not

the register

• Either of these can be faulting or nonfaulting: that is the

address does or does not cause an exception for virtual

address faults and protection violations.

• The most effective prefetch is ‘semantically invisible’ to a

program

• It doesnot change the contents of registers and memory

and can not cause virtual memory faults 42

• Prefetching makes sense only if the processor

can proceed while prefetching the data; that is,

the caches do not stall but continue to supply

instructions and data; while waiting for the

prefetched data to return

• Like hardware controlled prefetching, the goal is

to overlap execution with the prefetching of data

• Loops are the important targets, as they lend

themselves to prefetch optimizations

• If the miss penalty is small, the compiler just

unrolls the loop once or twice, and it schedules

the prefetches with the execution

43

Summary

44

Memory Technology

• Performance metrics
– Latency is concern of cache

– Bandwidth is concern of multiprocessors and I/O

– Access time
• Time between read request and when desired word

arrives

– Cycle time
• Minimum time between unrelated requests to memory

• DRAM used for main memory, SRAM used
for cache

Memory Technology

• SRAM
– Requires low power to retain bit

– Requires 6 transistors/bit

• DRAM
– Must be re-written after being read

– Must also be periodically refreshed
• Every ~ 8 ms

• Each row can be refreshed simultaneously

– One transistor/bit

– Address lines are multiplexed:
• Upper half of address: row access strobe (RAS)

• Lower half of address: column access strobe (CAS)

Memory Technology

• Amdahl:
– Memory capacity should grow linearly with processor speed

– Unfortunately, memory capacity and speed has not kept
pace with processors

• Some optimizations:
– Multiple accesses to same row

– Synchronous DRAM

• Added clock to DRAM interface

• Burst mode with critical word first

– Wider interfaces

– Double data rate (DDR)

– Multiple banks on each DRAM device

Memory Optimizations

• DDR:
– DDR2

• Lower power (2.5 V -> 1.8 V)

• Higher clock rates (266 MHz, 333 MHz, 400 MHz)

– DDR3
• 1.5 V

• 800 MHz

– DDR4
• 1-1.2 V

• 1600 MHz

• GDDR5 is graphics memory based on DDR3

Memory Optimizations

• Graphics memory:
– Achieve 2-5 X bandwidth per DRAM vs. DDR3

• Wider interfaces (32 vs. 16 bit)

• Higher clock rate
– Possible because they are attached via soldering instead of

socketted DIMM modules

• Reducing power in SDRAMs:
– Lower voltage

– Low power mode (ignores clock, continues to
refresh)

Flash Memory

• Type of EEPROM

• Must be erased (in blocks) before being
overwritten

• Non volatile

• Limited number of write cycles

• Cheaper than SDRAM, more expensive than
disk

• Slower than SRAM, faster than disk

Memory Dependability

• Memory is susceptible to cosmic rays

• Soft errors: dynamic errors
– Detected and fixed by error correcting codes

(ECC)

• Hard errors: permanent errors
– Use sparse rows to replace defective rows

• Chipkill: a RAID-like error recovery technique

Virtual Memory & Virtual Machines
• Security and privacy are two of the most challenges for

information technology

• Virtual memory provides an architectural support for

protecting processes from each other

Protection via virtual memory

• Page based virtual memory, including a translation look

aside buffer that caches page table entries, is the

primary mechanism that protects processes form each

other

• When computers are running multiple processes, it

would be too expensive to dedicate a full address space

worth of memory for each process. Hence there must be

a means of sharing a smaller amount of physical

memory among many processes 52

• One way to do this is by virtual memory (VM)

• It divides physical memory into blocks and

allocates them to different processes

• Inherent in such an approach must be a

protection scheme that restricts a process to the

blocks belonging only to that process

• Most forms of virtual memory also reduce the

time to start a program, since not all the code

and data need be in physical memory before a

program can begin

• Although VM provides protection, sharing is not

the reason that VM was invented

53

• VM was invented to relieve programmers of their

burden to fit in the code in the available physical

memory of the computer appropriately

• It automatically manages the two levels of the

memory hierarchy represented by main memory

and secondary storage

• In addition to sharing protected memory space

and automatically managing the memory

hierarchy, VM also simplifies loading the

program for execution

• Called relocation, this mechanism allows the

same program to run in any location in physical

memory

 54

Virtual memory

• Virtual memory divides physical memory into blocks and

allocates them to different processes.

• With virtual memory, each process has its own address

space.

• In most modern microprocessors intended for general-

purpose use, a memory management unit, or MMU, is built

into the hardware.

• The MMU's job is to translate virtual addresses into

physical addresses.

• a program runs in a process, and each process has its

own virtual memory space.

• The unit exchanged between memory and disc is called a

page

 55

Virtual address space

56

• The address produced by the processor is called

a virtual address

• This gets translated by a MMU via a page table

into a physical address (PT hit) or page fault (PT

miss)

• This mapping process is called address

translation or memory mapping

• Two classes

– Fixed size blocks called pages

– Variable size blocks called segments

57

• Several general memory hierarchy ideas about
caches are analogous to VM

• Page or segment is used for a block

• Page fault or address fault is used for a miss

• With VM, the processor produces virtual
addresses that are translated by a combination
of hardware and software to physical addresses,
which access main memory

• This process is called memory mapping or
address translation

• Replacement on cache miss is primarily
controlled by hardware, while VM replacement is
controlled by OS

58

• The size of the processor address determines the size of

the VM, but the cache size is independent of the

processor address size

• VM systems can be categorized into two classes:

• Those with fixed size blocks called – pages (fixed at

4096 to 8192 bytes)

• Those with variable size blocks – segments (size varies

– 1byte to 232 bytes)

59

• Paged Virtual Memory – memory divided into fixed sized

pages

– each page has a base physical address

• Segmented Virtual Memory – memory is divided into

variable length segments

– each segment has a base pysical address + length

60

Paged Vs Segmented Virtual Memory

61

Page Table

• Viritual memory is usually done by dividing memory up

into pages

• Data structure indexed by the page or segment number

• For segmentation – offset added to segment’s physical

address to obtain final physical address

• For paging – offset concatenated to physical page

address

• data structure that holds the mapping from virtual to

physical addresses – page table

• The page frame is the actual physical storage in

memory.

62

63

Techniques for Fast Address Translation

• Page tables are stored in the main memory, each memory access of

a program requires at least one memory accesses to translate

virtual into physical address.

• On the cache miss, there will be two memory accesses.

• When a translation for a virtual page is used, it will probably be

needed again in the near future because the references to the words

on that page have both temporal and spatial locality.

• Each virtual memory reference can cause two physical memory

accesses :

 -One to fetch the page table.

 -One to fetch the data.

• To overcome this problem a high-speed cache is set up for page

table entries called a Translation Lookaside Buffer (TLB).

• TLB is a special cache used to keep track of recently used

transactions.

64

• When a virtual memory address is referenced by a program, the

search starts in the CPU.

• First, instruction caches are checked.

• If the required memory is not in these very fast caches, the system

has to look up the memory’s physical address.

• At this point, TLB is checked for a quick reference to the location in

physical memory.

65

• Paged virtual memory access logically takes at least

twice as long, with one memory access to obtain the

physical address and second access to get the data

• The solution is to rely on the principle of locality

• If accesses have locality, then the address

translations also must have locality

• By keeping these address translations in a spatial

cache, a memory access rarely requires a second

access to translate the data

• This special address translation cache is referred to

as TLB

• A TLB entry is like a cache entry where the tag

holds portion of the virtual address and the data

portion holds a physical page address, protection

field, valid bit and usually a use bit and a dirty bit 66

• The OS changes these bits by changing the

value in the page table and then validating the

corresponding TLB entry

• When the entry is reloaded from the page table,

the TLB gets an accurate copy of bits

• The computer then maps virtual addresses to

physical addresses

Protection via virtual machines

• The broadest definition of VM includes basically

all emulation methods that provide a standard

software interface, such as the Java VM

• A single computer runs multiple VMs and can

support a no. of different OSes.

67

• On a conventional platform, a single OS ‘owns’ all

the hardware resources, but with a VM, multiple

Oses all share the hardware resources

• The software that supports VM is called a virtual

machine monitor (VMM)

• The VMM is the heart of the VM technology

• The underlying hardware platform is called the host,

and its resources are shared among the guest VMs

• The VMM determines how to map virtual resources

to physical resources

• A physical resource may be time shared,

partitioned..

• The VMM is much smaller than the traditional OS

• The VM provides two other benefits: Managing

software and Managing hardware 68

69

