
 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Behavioral Modeling

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Behavioral modeling
• describe design functionality in an algorithmic manner

• very high level of abstraction

• Structural procedures and procedural assignments

• Structural procedures are basic statements in behavioral

modeling

• Procedural assignments appear only inside these

statements

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Structural Procedures
 Two statements

 Initial

 always

 initial → they execute only once

 always → they execute for ever

 The statements always and initial cannot be nested.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

initial Statement
• All statements inside an initial statement constitute an

initial block.

• An initial block starts at time 0, executes exactly once

during a simulation, and then does not execute again.

• If there are multiple initial blocks, each block starts to

execute concurrently at time 0.

• Each block finishes execution independently of other

blocks.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

initial Statement

module stimulus;

reg x,y, a,b, m;

initial

m = 1'b0;

initial

begin

#5 a = 1'b1; //multiple statements; need to be grouped

#25 b = 1'b0;

End

initial

begin

#10 x = 1'b0;

#25 y = 1'b1;

end

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

always Statement

• All behavioral statements inside an always statement

constitute an always block.

• The always statement starts at time 0 and executes the

statements in the always block continuously in a looping

fashion.

• This statement is used to model a block of activity that is

repeated continuously in a digital circuit

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

always Statement

module generate (output reg y);

initial

y = 1'b0;

always

y = ~y;

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Blocking assignments

• Block assignments are executed in the order they appear

• executed one after another.

• first statement “blocks” the second until it is done

• The = operator is used to specify blocking assignments.

– Example:

a = b;

b = a;

 Both a & b = b

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Non-blocking assignments

• Non-blocking assignments <= executed in parallel.

• an earlier statement does not block the later statement.

– Example:

a <= b;

b <= a;

 swap a & b

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Event based control
 An event is the change in the value on a register or a net.

 Events can be utilized to trigger execution of a statement or

a block of statements

 @ symbol is used to specify an event control

 Statements can be executed on changes in signal value or

at a positive or negative transition of the signal value

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Events

 always @(signal1 or signal2 or ..) begin

 ..

 end

 always @(posedge clk) begin

 ..

 end

 always @(negedge clk) begin

 ..

 end

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements – data flow

Syntax:
conditional_expression ? expression_if_true :

expression_if_false

2-to-1 multiplexer:
assign output = s ? input1 : input0;

4-to-1 multiplexer:
assign output = s[1] ? (s[0] ? in3 : in2) : (s[0] ? in1 : in0)

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements - Behavioral
//Type 1 conditional statement. No else statement.

//Statement executes or does not execute.

if (<expression>) true_statement ;

//Type 2 conditional statement. One else statement

//Either true_statement or false_statement is evaluated

if (<expression>)

 true_statement ;

else false_statement ;

//Type 3 conditional statement. Nested if-else-if.

//Choice of multiple statements. Only one is executed.

if (<expression1>) true_statement1 ;

else if (<expression2>) true_statement2 ;

else if (<expression3>) true_statement3 ;

else default_statement ;

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements - Behavioral

• if – else

• Type 1

– if (enable) out = in;

• Type 2

– if (num_queued < Max_Q)

 begin

 data_queue = data;

 number_queued = number_queued + 1;

 end

else

 $display(“Queue full”)

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements

• Type 3
– if (alu_control == 0)

 y = x + z;

 else if (alu_control == 1)

 y = x - z;

 else if (alu_control == 2)

 y = x * z;

 else

 $display(“Invalid ALU control signal”);

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

module mux4to1 (w0, w1, w2, w3, S, f);

 input w0, w1, w2, w3;

 input [1:0] S;

 output f;

 reg f;

 always @(w0 or w1 or w2 or w3 or S)

 if (S == 2'b00)

 f = w0;

 else if (S == 2'b01)

 f = w1;

 else if (S == 2'b10)

 f = w2;

 else if (S == 2'b11)

 f = w3;

endmodule

Conditional Statements - Examples

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

module mux4to1 (W, S, f);

 input [0:3] W;

 input [1:0] S;

 output f;

 reg f;

 always @(W or S)

 if (S == 0)

 f = W[0];

 else if (S == 1)

 f = W[1];

 else if (S == 2)

 f = W[2];

 else if (S == 3)

 f = W[3];

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Building a 16-to-1 multiplexer combining 4-to-1 multiplexers:

module mux16to1 (W, S16, f);

 input [0:15] W;

 input [3:0] S16;

 output f;

 wire [0:3] M;

 mux4to1 Mux1 (W[0:3], S16[1:0], M[0]);

 mux4to1 Mux2 (W[4:7], S16[1:0], M[1]);

 mux4to1 Mux3 (W[8:11], S16[1:0], M[2]);

 mux4to1 Mux4 (W[12:15], S16[1:0], M[3]);

 mux4to1 Mux5 (M[0:3], S16[1:0], f);

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

 Nested if-else-if becomes unwieldy if too many alternatives

 Solution is case statement

 case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3;

...

...

default: default_statement;

endcase

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

case (alu_control)

2'd0 : y = x + z;

2'd1 : y = x - z;

2'd2 : y = x * z;

default : $display("Invalid ALU control

signal");

endcase

if (alu_control == 0)

 y = x + z;

else if (alu_control == 1)

 y = x - z;

else if (alu_control == 2)

 y = x * z;

else

 $display(“Invalid ALU control signal”);

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Examples

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

reg out;

always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0}) //Switch based on concatenation of

control signals

2'd0 : out = i0;

2'd1 : out = i1;

2'd2 : out = i2;

2'd3 : out = i3;

default: $display("Invalid control signals");

endcase

endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

 In case statement it is possible to use the logic values 0, 1,

x, and z in the case alternatives.

 Verilog provides two variants of the case statement:

 The casez statement treats all z values in the case alternatives as

don’t-cares.

 The casex statement treats all z and x values as don’t-cares.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

casex - Examples

module priority_encoder (W, Y, z);
 input [3:0] W;
 output [1:0] Y;
 output z;
 reg [1:0] Y;
 reg z;

 always @(W)
 begin
 z = 1;
 casex (W)
 4'b1xxx: Y = 3;
 4'b01xx: Y = 2;
 4'b001x: Y = 1;
 4'b0001: Y = 0;
 default: begin
 z = 0;
 Y = 2'bx;
 end
 endcase
 end
endmodule

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Loops

 while Loop

 executes until the while expression is not true

 loop is entered only when the while-expression is not true

 //Increment count from 0 to 127. Exit at count 128.

integer count;

initial

begin

 count = 0;

 while (count < 128) //Executes till count is 127

 begin

 count = count + 1;

 end

end

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Loops

 for Loop

 An initial condition

 A check to see if the terminating condition is true

 A procedural assignment to change value of the control variable

for (count=0; count < 128; count = count + 1)

...

integer i;

initial

begin

 for(i = 0; i < 32; i = i + 2)

 //initialize all even locations with 0

 state[i] = 0;

end

