Behavioral Modeling

Department of Electrical & Electronics Engineering, Amrita School of Engineering

STEPIE AT ST

Behavioral modeling

describe design functionality in an algorithmic manner
very high level of abstraction
Structural procedures and procedural assignments

Structural procedures are basic statements in behavioral
modeling

Procedural assignments appear only inside these
statements

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Structural Procedures

= [Two statements
= Initial
= always
= initial — they execute only once

= always — they execute for ever

= The statements always and initial cannot be nested.

Department of Electrical & Electronics Engineering, Amrita School of Engineering

initial Statement

All statements inside an initial statement constitute an
Initial block.

An initial block starts at time 0, executes exactly once
during a simulation, and then does not execute again.

If there are multiple initial blocks, each block starts to
execute concurrently at time 0.

Each block finishes execution independently of other
blocks.

Department of Electrical & Electronics Engineering, Amrita School of Engineering

initial Statement

module stimulus;
reg x,y, a,b, m;
initial

m = 1'b0;

initial
begin

#5 a = 1'bl;
#25 b = 1'b0;
End

//multiple

initial
begin
#10 x =
#25 y =
~ end

i 'endmodule

statements;

Department of Electrical & Electronics Engineering, Amrita School of Engineering

need to be grouped

always Statement

« All behavioral statements inside an always statement
constitute an always block.

« The always statement starts at time O and executes the

statements in the always block continuously in a looping
fashion.

« This statement is used to model a block of activity that is
repeated continuously in a digital circuit

Department of Electrical & Electronics Engineering, Amrita School of Engineering

always Statement

module generate (output reg vy);

initial
y = 1'b0;

always
Y = ~Ys

endmodule

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Blocking assignments

Block assignments are executed in the order they appear
executed one after another.

first statement “blocks” the second until it is done

The = operator is used to specify blocking assignments.

— Example:
a =Db;
b = a;

Botha&b=0b

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Non-blocking assignments

* Non-blocking assignments <= executed in parallel.
 an earlier statement does not block the later statement.

— Example:
a <= b;
b <= a;

swapaé&b

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Event based control

An event is the change in the value on a register or a net.

Events can be utilized to trigger execution of a statement or
a block of statements

@ symbol is used to specify an event control

Statements can be executed on changes in signal value or
at a positive or negative transition of the signal value

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Events

always @(signall or signal2 or
end

always @ (posedge clk) begin
end

always @ (negedge clk) begin

end

begin

Department of Electrical & Electronics Engineering, Amrita School of Engineerin

Conditional Statements — data flow

Syntax:

conditional expression ? expression if true :
expression if false

2-t0-1 multiplexer:

assign output = s ? inputl : inputO;

4-to-1 multiplexer:

assign output = s[1l] ? (s[0] ? 1n3 : 1n2) : (s[0] ? inl : 1n0)

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements - Behavioral

//Type 1 conditional statement. No else statement.
//Statement executes or does not execute.
1f (<expression>) true statement ;

//Type 2 conditional statement. One else statement
//Either true statement or false statement is evaluated
1f (<expression>)

true statement ;
else false statement ;

//Type 3 conditional statement. Nested if-else-if.
//Choice of multiple statements. Only one is executed.
1f (<expressionl>) true statementl ;
else 1f (<expressionZ>) true statement2 ;
else 1f (<expression3>) true statement3 ;

~= else default statement ;

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements - Behavioral

o if—else
e Typel
— 1f (enable) out = in;

 Type 2
- 1if (num queued < Max Q)
begin
data queue = data;
number queued = number queued + 1;
end
else
Sdisplay (“Queue full”)

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements
* Type 3

- if (alu control == 0)
V=X + z;

else if (alu control == 1)
Yy = X - z;

else if (alu control == 2)
y = x * z;

else

$display (“Invalid ALU control signal”);

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Conditional Statements - Examples

module mux4tol (w0, wl, w2, w3, S, f);

input w0, wl, w2, w3;
input [1:0] S;
output f;
reg f;
always @ (w0 or wl or w2 or w3 or S)
if (S == 2'b00)
f = w0;
else if (S == 2'b01)
f = wl;
else if (S == 2'bl0)
f = w2;
else if (S == 2'bll)
f = w3;
endmodule

Department of Electrical & Electronics Engineering, Amrita School of Engineerin

wo 5

w1 —01
w2 —10

L1

o

module mux4tol (W, S, £f);

input [0:3] W;
input [1:0] S;
output f;

reg f;

always (@ (W or S)

if (s == 0)
f = W[0];
else 1f (S == 1)
f=wll];
else 1f (S == 2)
f =Ww[2];
else if (S == 3)
f = W[3];

endmodule

w0 —

w1 =
W2 =

W3 =

/

00
01
10
11

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Building a 16-to-1 multiplexer combining 4-to-1 multiplexers:

module muxlotol (W, Sl6, f);
input [0:15] W;
input [3:0] S16;
output f;
wire [0:3] M;

mux4tol Muxl

7

:3], S16[1:0], M|

7], Sle[1:0], M]
1], S1le[1:0], M

2:15], Sle[1:0],
3], Sle[l:0], f);

0
mux4tol Mux? 1
mux4tol Mux3 [

1)
1)
2]
MI[3

I—‘OO.-D-O

) ;
1)

mux4tol Mux4

EEEEE

mux4tol Muxb
endmodule

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

= Nested if-else-if becomes unwieldy if too many alternatives
= Solution Is case statement

case (expression)

alternativel: statementl;
alternative2: statement2;
alternative3d: statement3;

default: default statement;
endcase

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

case (alu control)

2'd0 : y=x + z;
2'dl : y=x - z;
2'd2 : y=x * z;

default : $display("Invalid ALU control
signal") ;
endcase

if (alu control == 0)
Vy =X+ z;

else if (alu control == 1)
Yy = xXx - z;

else if (alu control == 2)
y = x * z;

else

Sdisplay (“Invalid ALU control signal”);

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Examples

module mux4 to 1 (out, iO, il, i2, i3, sl1l, s0);
// Port declarations from the I/O diagram
output out;

input i0O, il, i2, i3;

input sl, sO;

reg out;

always @(sl or sO or i0 or il or i2 or i3)

case ({sl, s0}) //Switch based on concatenation of
control signals

2'd0 : out = iO;

2'dl : out = il;

2'd2 : out i2;

2'd3 : out = 1i3;

default: S$display("Invalid control signals");
endcase

endmodule

Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiway Branching

= In case statement it is possible to use the logic values 0, 1,
X, and z in the case alternatives.

= Verilog provides two variants of the case statement:

m The casez statement treats all z values in the case alternatives as
don’t-cares.

m The casex statement treats all z and x values as don’t-cares.

Department of Electrical & Electronics Engineering, Amrita School of Engineering

casex - Examples

module priority encoder (W, Y, z);
input [3:0] W;
output [1:0] Y,
output z;
reg [1:0] Y;
reg z;

always @ (W)

begin
z = 1;
casex (W)
4'blxxx: Y = 3;
4'b01lxx: Y = 2;
4'b001x: Y = 1;
4'b0001: Y = 0;
default: begin
z = 0;
Y = 2'bx;
end
endcase
end

/7, endmodule

Department of Electrical & Electronics Engineering, Amrita School of Engineering

LoopsS

= while LooOp

= executes until the while expression is not true
= |loop is entered only when the while-expression is not true

//Increment count from 0 to 127. Exit at count 128.
integer count;

initial
begin
count = 0O;
while (count < 128) //Executes till count is 127
begin
count = count + 1;
end

Department of Electrical & Electronics Engineering, Amrita School of Engineering

LoopsS

= for Loop

= An initial condition
= A check to see if the terminating condition is true
= A procedural assignment to change value of the control variable

for (count=0,; count < 128; count = count + 1)

integer 1;

initial

begin
for(i = 0; 1 < 32; 1 =1 + 2)
//initialize all even locations with O
state[i] = 0;

end

Department of Electrical & Electronics Engineering, Amrita School of Engineering

