
 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessors and

Thread-Level Parallelism

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multithreading
• Increasing performance by ILP has the great advantage

that it is reasonable transparent to the programmer, ILP

can be quite limited or hard to exploit in some applications

• When the processor is stalled waiting on a cache miss, the

utilization of functional units drops

• Other forms of parallelism – multithreading

• Multithreading allows multiple threads to share the

functional units of a single processor in an overlapping

fashion.

• General method to exploit thread-level parallelism (TLP) is

with a multiprocessor that has multiple independent threads

operating at once and in parallel.

• Multithreading shares processor core among a set of

threads duplicating registers and program counter.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multithreading

• For sharing, the processor must duplicate the independent

state of each thread

• In addition the hardware must support the ability to change

to a different thread relatively quickly

• Three main hardware approaches to multithreading

– Fine-grained multithreading

– Coarse-grained multithreading

– Simultaneous multithreading

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Fine-grained multithreading

• It switches between threads on each instruction, causing

the execution of multiple threads to be interleaved.

• Round-robin fashion – skipping any thread that are stalled

at that time

• CPU must be able to switch threads on every clock cycle

• It can hide the throughput losses that arise from both short

and long stalls, since instructions from other threads can be

executed when one thread stalls

• It slows down the execution of the individual threads, since

a thread that is ready to execute without stalls will be

delayed by instructions from other threads

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Coarse-grained multithreading

• Switches threads only on costly stalls, such as level two or

three cache misses

• Relieves the need to have thread switching

• likely to slow the processor down, since the instructions

form other threads will only be issued when a thread

encounters a costly stall

• It is limited in its ability to overcome throughput losses,

especially from shorter stalls

• There is a pipeline start up cost, because a CPU with CGM

issues instruction form a single thread, when a stall occurs,

the pipeline must be emptied. Next thread must fill the

pipeline before instructions will be able to complete.

• More useful in reducing penalty of high cost stalls where

pipeline fill is negligible compared to stall time

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Simultaneous multithreading

• Simultaneous multithreading (SMT) is a variation on

multithreading that uses the resources of a multiple issue,

dynamically-scheduled processor to exploit TLP at the

same time it exploits ILP.

• Modern multiple- issue processors often have more

functional unit parallelism available than a single thread.

• With register renaming and dynamic scheduling, multiple

instructions from independent threads can be issued

without regard to the dependences among them; the

resolution of the dependences can be handled by the

dynamic scheduling capability.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Superscalar Processor

• Superscalar with no multithreading

• Superscalar with coarse-grained multithreading

• Superscalar with fine-grained multithreading

• Superscalar with Simultaneous multithreading

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessing
• Other than ILP, the only scalable and general–purpose

way to increase performance faster is through

multiprocessing

• Increased importance of miultiprocessing

– Growing interest in high-end servers as cloud computing and

software-as-a-service become more important

– Growth in data-intensive applications driven by the availability of

massive amounts of data on the internet.

• Multiprocessors exploit thread level parallelism through

two different software models

– Tightly coupled set of threads collaborating on a single task

parallel processing

– Execution of multiple, relatively independent processes from one

or more users request level parallelism – such as database

responding to queries multiprogramming

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessor Architecture
• multiple processors increase performance

• Flynn’s proposed a simple model of categorizing all

computers

• looked at the parallelism in the instruction and data

streams and placed all the computers into one of the 4

categories: (Flynn’s Taxonomy)

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

– SISD

• uniprocessor
– SIMD

• The same instruction is executed by multiple
processors using different data streams

• Exploit data level parallelism by applying the
same operations to multiple items of data in
parallel

• Each processor has its own data memory, but
there is a single instruction memory and
control processor, which fetches and
dispatches the instruction

• The multimedia extension, vector architecture
are the largest class of SIMD architectures.

11

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

– MISD

• No commercial multiprocessor of this type has been

built to date

– MIMD

• Each processor fetches its own instruction and

operated on its own data

• They exploit TLP, bz. multiple threads operate in

parallel

• In general, TLP is more flexible than DLP

• They offers flexibility. With the correct hardware and

software, they can function as single user

multiprocessors focusing on high performance for one

application, as multi programmed multiprocessors

running many tasks simultaneously, or as some

combination of these functions.

 12

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• With MIMD, each processor is executing its own
instruction stream or process.

• A process is a segment of code that may be run
independently

• The state of the process contains all the
information necessary to execute that program on
a processor

• It is also useful to be able to have multiple
processors executing a single program and
sharing the code and most of their address space

• When multiple process share code and data in this
way, they are often called threads.

• To take advantage of an MIMD multiprocessors
with n processors, we must have at least n threads
or processes to execute.

13

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• The important qualitative distinction of TLP from ILP is

that TLP is identified at a high level by the software

system and that the threads consist of hundreds to

millions of instructions that may be executed in parallel.

• Threads can also be used to exploit DLP, but with higher

overhead

• The grain size (the amount of computation assigned to a

thread) must be sufficiently large to exploit the

parallelism efficiently.

14

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

MIMD

• MIMD multiprocessors fall into two classes, depending on

the number of processors involved, which in turn dictates

a memory organization and interconnect strategy

– Centralized shared memory architecture
• Small number of cores

• Share single memory with uniform memory latency

• Symmetric relationship to all processors – uniform access time – often called
as Symmetric multiprocessors (SMPs)

– Distributed shared memory architecture

• Physically distributed memory

• Non-uniform memory access/latency (NUMA)

• Processors connected via direct (switched) and non-direct (multi-hop)

interconnection networks

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

MIMD

Centralized shared memory

Distributed shared memory

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Distributed shared memory

• Most of the access are to the local memory in the node

• Reduces latency for access to the memory

• Scales memory bandwidth

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Models for communication and memory architecture

• A large multi processor must use multiple memories that are physically
distributed with the processors

• There are two alternative architectural approaches that differ in the
method used for communicating data among processors:

Distributed shared-memory (DSM) architecture
• Communication occurs through a shared address space, as it does

in a symmetric shared-memory architecture

• The physically separate memories can be addressed as one
logically shared address space

• Memory reference can be made by any processor to any memory
location

• Shared-memory refers to the shared address space

• The same physical address on two processors refers to the same
location in memory

• Shared memory does not mean that there is a single centralized
memory

• In contrast to symmetric shared memory multiprocessors which is
also know as UMAs , the DSM multiprocessors are also known as
NUMAs, since the access time depends on the location of a data
word in memory

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Centralized Shared-Memory

Architectures

• Use of large, multilevel caches substantially reduce the

memory bandwidth demands of a processor

• If memory bandwidth is reduced, multiple processors may

be able to share the same memory

• Because of the small size of the processor and the

significant reduction in bus bandwidth achieved by large

caches, symmetric processors were extremely cost

effective , provided that a sufficient amount of memory

bandwidth existed.

• Symmetric shared-memory machines usually support the

caching of both shared and private data

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• Private data are used by a single processor

• Shared data are used by multiple processors, essentially

providing communication among the processors through

reads and writes of the shared data

• When a private item is cached, its location is migrated to

the cache, reducing the average access time as well as

the memory bandwidth required (uniprocessor)

• When shared data are cached, the shared value may be

replicated in multiple caches

• In addition to reduction in access latency and required

memory band width, replication also provides a reduction

in contention that may exist for shared data items that are

being read by multiple processors simultaneously

• Caching of shared data introduces a new problem: cache

coherence

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessor Cache Coherence

• Caching shared data introduces a new problem because

the view of memory held by two different processors is

through their individual caches, which with out any

additional precautions, could end up seeing two different

values – cache coherence problem

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• Memory system is coherent if any read of a data item

returns the most recently written value of that data item.

• Two different aspects of memory system

– Coherence, defines what values can be returned by a read

– Consistency, determines when a written value will be

returned by a read

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• A memory system is coherent if:

– A read by a processor P to a location X that follows a write

by P to X, with no writes of X by another processor

occurring between the write and the read by P, always

returns the value written by P. preserves program order

– A read by a processor to location X that follows a write by

another processor to X return the written value if the read

and write are sufficiently separated in time and no other

writes to X occur between the two accesses. coherence

– Write to the same location are serialized, that is two writes

to the same location by any two processors are seen in the

same order by all processors. If the value 1 and 2 are

written to a location, processors can never read the value of

the location as 2 and then later read it as 1. serialization

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• Question of when a written value will be seen is also important

• The issue of exactly when a written value must be seen by a

reader is defined by a memory consistency model

• Coherence and consistency are complementary

• Coherence defines the behavior of reads and writes to the same

memory location, while consistency defines the behavior of reads

and writes with respect to accesses to other memory locations

• Make following assumptions:

– A write does not complete until all processors have seen the

effect of that write

– The processor does not change the order of any write w.r.t.

any other memory access

• These assumptions means that if a processor write location A

followed by B, any processor that sees the new value of B must

also see the new value of A

• These restrictions allow the processor to reorder the reads, but

forces the processor to finish a write in program order

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Basic Schemes for Enforcing Coherence

• A program running on multi processors will have copies of
the same data in several caches.

• In a coherent multi processor, the caches provide both
migration and replication of shared data items.

• Coherent caches provides migration - data item can be
moved to a local cache and used there in a transparent
fashion, reducing both the latency and the BW demand on
the shared data

• Coherent caches also provide replication for shared data
that are being simultaneously read, since the caches make
a copy of the data item in the local cache, reducing both
latency and contention for a read shared data item.

• Supporting this migration and replication is critical to
performance in accessing shared data

• Small scale multi processors adopt a hardware solution by
introducing a protocol to maintain coherent caches

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Basic Schemes for Enforcing Coherence

• The protocol to maintain coherence for multiple processors
are called cache coherence protocols.

• Key to implementing a cache coherence protocol is
tracking the state of any sharing of data block.

• There are two classes of protocols:
• Directory based - the sharing status of a block of physical memory

is kept in just one location, called the directory

• Snooping - every cache that has a copy of the data from a block of
physical memory also has a copy of the sharing status of the block,
but no centralized status is kept. These caches are all accessible
via some broadcast medium and all cache controllers monitor or
snoop on the medium to determine whether or not they have a
copy of a block that is requested on a bus

• Snooping Protocols
• Write invalidate protocol

• Write update or write broadcast protocol

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Snooping Protocols

• Write invalidate Protocol – to ensure that a processor has

exclusive access to a data item before it writes that item

because it invalidates other copies on a write. Exclusive

access ensures that no other readable or writable copies

of an item exist when the write occurs. All other cache

copies of the item are invalidated.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Snooping Protocols

• Consider a write followed by a read by another processor:

since the write requires exclusive access, any copy held by

the reading processor must be invalidated.

• When the read occurs, it misses in the cache and is forced

to fetch the new copy of the data

• For a write, prevent any other processor from being able to

write simultaneously

• If two processors try to write the same data

simultaneously, one of them will win, causing the other

processor’s copy to be invalidated.

• For the other processor to complete its write, it must obtain

a new copy of the data, which must now contain the

updated value. Therefore this protocol enforces write

serialization

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Snooping Protocols

• Write update or write broadcast protocol - update all the

cached copies of a data item when that item is written.

• A write update protocol must broadcast all writes to shared

cache lines, it consumes considerably more bandwidth.

• For this reason, all recent multiprocessors have opted to

implement a write invalidate protocol.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

Basic Implementation Techniques

• The key to implementing an invalidate protocol is the use of
the bus, or another broadcast medium, to perform
invalidates.

• To perform an invalidate, the processor acquires bus
access and broadcasts the address to be invalidated on the
bus

• The processors check whether the address on the bus is in
their cache. If so, the corresponding data in the cache are
invalidated

• When a write to a block that is shared occurs, the writing
processor must acquire bus access to broadcast its
invalidation

• If two processors attempt to write shared blocks at the
same time, their attempts to broadcast an invalidate
operation will be serialized when they arbitrate for the bus

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• The first processor to obtain bus access will cause any
other copies of the block it is writing to be invalidated

• If the processors were attempting to write to the same
block, the serialization enforced by the bus also serializes
their writes

• All coherence schemes require some sort of serializing
access to the communication medium or another shared
structure

• In addition to invalidating outstanding copies of a cache
block that is being written into, it is required to locate a data
item when a cache miss occurs

• In a write-through cache, it is easy to find the recent value
of the data item, since all written data are always sent to
the memory, from which most recent value of data can be
fetched.

• In a design with adequate memory bandwidth to support
the write traffic, using write-through simplifies the
implementation of cache coherence

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• For a write-back cache, finding the most recent value is
harder, since the most recent value can be in a cache
rather than in memory

• Write-back cache can use the same snooping scheme both
for cache miss and for writes

• Each processor snoops every address placed on the bus

• If a processor finds that it has a dirty copy of the requested
cache, it provides that cache block in response to the read
request and causes the memory access to be aborted.

• The additional complexity comes from having to retrieve
the cache block from the processor’s cache, which often
take longer time than retrieving form shared memory if the
processor are in separate chips.

• Since write-back caches generate lower requirements for
memory bandwidth, they support larger number of faster
processors and used in most multiprocessors.

 Department of Electrical & Electronics Engineering, Amrita School of Engineering

• For a write-back cache, finding the most recent value is
harder, since the most recent value can be in a cache
rather than in memory

• Write-back cache can use the same snooping scheme both
for cache miss and for writes

• Each processor snoops every address placed on the bus

• If a processor finds that it has a dirty copy of the requested
cache, it provides that cache block in response to the read
request and causes the memory access to be aborted.

• The additional complexity comes from having to retrieve
the cache block from the processor’s cache, which often
take longer time than retrieving form shared memory if the
processor are in separate chips.

• Since write-back caches generate lower requirements for
memory bandwidth, they support larger number of faster
processors and used in most multiprocessors.

