
13

1 Design Goals
of USB

This Chapter

Many PCs designed today still implement peripheral devices based on inter-
faces used in the original IBM PC designs of the early 1980s. These implementa-
tions have numerous shortcomings that cause both designers and users
considerable frustration. This chapter discusses the primary design goals of
USB 2.0 and reviews the shortcomings of the legacy implementation. 

The Next Chapter

The next chapter provides an overview of the primary concepts of USB transfers
and describes the interaction between USB system software, system hardware,
and USB devices for USB 1.x systems and for USB 2.0 systems. The USB com-
munications process is described, including the concept of the device frame-
work. Each hardware and software element in a USB system is introduced and
its primary functions are described.

Shortcomings of the Original PC I/O Paradigm

USB emerged as a result of the difficulties associated with the cost, configura-
tion, and attachment of peripheral devices in the personal computer environ-
ment. In short, USB creates a method of attaching and accessing peripheral
devices that reduces overall cost, simplifies the attachment and configuration
from the end-user perspective, and solves several technical issues associated
with old style peripherals. The following sections detail the various problems
associated with PC peripherals today and investigate the challenges that the
USB standard faces.



USB System Architecture

14

Limited System Resources

Figure 1-1 on page 14 illustrates the legacy I/O paradigm where peripheral
devices were typically mapped into the CPU’s I/O address space and assigned
a specific IRQ line, and in some cases a DMA channel. These system resources
were assigned to particular peripheral devices by IBM and other manufacturers
and became the standard I/O locations, IRQs, and DMA channels used by soft-
ware developers to access a given device. Figure 1-1 illustrates the I/O address
space interrupt assignments that are used in the PC environment, making these
system resources scarce while complicating device configuration.

Another limitation in the legacy PC environment is the limited number of
peripheral devices that can be attached to the standard connectors. For exam-
ple, the serial and parallel connectors support single devices only, thereby limit-
ing the number of peripherals that can be easily and inexpensively attached.

Figure 1-1: System Resources Used by Legacy Peripheral Devices

����
���� �����	
���
�
���


���
�
���
�
���

���
�

����
���


����
���
����
����
����

�����

���	


��

������

���	


��

��������� �� ��

������ � 	
������

����� ����

�

����

�������� 	
������

���� ���� 	��� �����

������ � 	�����

��� ����������



Chapter 1: Design Goals of USB

15

Interrupts 

Perhaps the most critical system resource problem revolves around the alloca-
tion of interrupts required by the myriad of devices that are typically imple-
mented in PCs. This is particularly true of peripheral devices that attach via the
ISA bus, since the ISA bus does not reliably support sharable interrupts. Table 1-
1 lists each IRQ line and the devices that typically use it. As can be seen, many
of the IRQ lines are dedicated to particular devices based on legacy conven-
tions, while other IRQ lines may be used by a variety of peripheral devices. In
PCI-based systems that also contain an ISA bus, the interrupt shortage can
become a major problem, because several of the IRQ lines ideally should be left
available for ISA expansion cards that might require them. 

Table 1-1: Typical Legacy Interrupt Lines Used by Standard Devices

IRQ 
Line

Devices 

IRQ0 system timer (dedicated on system board)

IRQ1 keyboard (dedicated on system board)

IRQ2 cascade channel for slave interrupt controller (not available for 
peripheral devices)

IRQ3 serial mouse, modem, plotter, serial printer, game port, pen, 
infrared port

IRQ4 serial mouse, modem, plotter, serial printer

IRQ5 bus mouse, parallel printer, sound card, LAN adapter, tape 
drive, game port

IRQ6 floppy drive

IRQ7 parallel printer

IRQ8 RTC alarm (dedicated on system board)

IRQ9 LAN adapter, video adapter, tape drive, game port

IRQ10 LAN adapter, sound card 

IRQ11 LAN adapter, SCSI controller, PCMCIA controller

IRQ12 PS/2 mouse, PCMCIA controller



USB System Architecture

16

I/O Addresses

I/O address conflicts are also quite common in the PC environment. Note that
peripheral devices usually require a block of I/O address locations to report sta-
tus information and to issue commands to the device. While it’s true that x86
processors have the ability to access 64KB of I/O address locations (more than
enough for all peripheral devices), legacy ISA expansion cards typically decode
only 10 of the 16 address lines available. This yields a maximum 1KB block of
address space that is usable by ISA expansion devices. Furthermore, the limited
decode creates the well known aliasing effect that renders the upper 768 bytes
of each aligned 1KB of I/O space unusable by other devices. See MindShare’s
ISA System Architecture book, published by Addison-Wesley, for details.

Non-shareable Interfaces

Standard PC peripheral interfaces (e.g., serial and parallel connections) support
the attachment of a single device. Since only one peripheral device can be
attached at any given time, the flexibility of such connections is minimized. This
limitation frequently leads to the costly decision of building an expansion card
that plugs into an expansion bus (e.g., ISA or PCI) to create an attachment point
for a new peripheral design.

End User Concerns

End users are faced with a variety of problems when connecting peripherals to
their PCs. These concerns include:

• Too many connector/cable types
• System must be shut down to attach most peripherals
• System must be restarted to install/load software
• Cost

IRQ13 numeric coprocessor errors (dedicated on system board)

IRQ14 hard drive

IRQ15 SCSI controller, PCMCIA controller

Table 1-1: Typical Legacy Interrupt Lines Used by Standard Devices

IRQ 
Line

Devices 



Chapter 1: Design Goals of USB

17

Cable Crazed

Dedicated cables are required for the mouse, keyboard, printer, external
modem, Zip drive, plotter, etc., most of which are completely different. Figure
1-2 on page 17 illustrates the backplane of a typical PC before USB. The variety
of different connectors and cables required to connect particular peripheral
devices is inconvenient and confusing. 

Installation and Configuration of Expansion Cards

When peripherals are purchased, many of them require the installation of
expansion cards. This, of course, may involved removing the cover of the PC,
setting the switches and jumpers to configure the card, inserting the card, and
replacing the cover. The trouble only begins there. Once the system is powered
up the software for this device may have to be installed from diskette, which
can also be a frustrating process for novice and experienced user alike.

No Hot Attachment of Peripherals

When most legacy I/O devices are attached to the system, they will not work
without first restarting the system. Restarting the system is required so that the
new peripheral can be detected by software. In the process, system resources
must be selected and assigned to the new device (e.g., I/O space, IRQ line, and
DMA channel) in order for it to work correctly and to ensure that the resource
selected is not already being used by another device in the system.

Figure 1-2: Connectors at Backplane

Keyboard Mouse Monitor Serial
Port 1

Modem Sound Card
(speakers & mic.)

Parallel
Port

Ethernet
Interface

SCSI
Interface



USB System Architecture

18

Cost

The cost of implementing systems and peripheral devices based on the original
PC design is fairly expensive due to the high cost of the standard peripheral
connectors and associated cables. Since most of the standard connectors on the
PC are already used by a wide variety of peripheral devices, it may be necessary
to build an expansion card to provide a way to attach your peripheral device to
the system, making the solution even more costly.

The USB Paradigm

The design goals of a new peripheral standard should overcome the existing
shortcomings perceived by manufacturers and users, while providing for fur-
ther growth, performance, and expansion. The design goals of USB include:

• a single connector type to connect any PC peripheral
• ability to attach many peripheral devices to the same connector
• a method of easing the system resource conflicts
• hot plug support
• automatic detection and configuration of peripheral devices
• low-cost solution for both system and peripheral implementations
• enhanced performance capability
• support for attaching new peripheral designs
• support for legacy hardware and software
• low-power implementation

USB breaks away from the resource problems associated with legacy PC I/O
implementations. The resource constraints related to I/O address space, IRQ
lines, and DMA channels no longer exist with the USB implementation. Each
device residing on the USB is assigned an address known only to the USB sub-
system and does not consume any system resources. USB supports up to 127
device addresses that limit the number of USB devices supported in a single
USB implementation. USB devices typically contain a number of individual reg-
isters or ports that can be indirectly accessed by USB device drivers. These reg-
isters are known as USB device endpoints.

When a transaction is sent over the USB, all devices (except low-speed devices)
will see the transaction. Each transaction begins with a packet transmission that
defines the type of transaction being performed along with the USB device and
endpoint addresses. This addressing is managed by USB software. Other non-



Chapter 1: Design Goals of USB

19

USB devices and related software within the system are not impacted by these
addresses. Every USB device must have an internal default address location
(called endpoint zero) that is reserved for configuring the device. Via endpoint
zero, USB system software reads standard descriptors from the device. These
descriptors provide configuration information necessary for hardware and soft-
ware initialization. In this manner, system software can detect the device type
(or class information) and determine how the device is intended to be accessed.

Enhanced System Performance

The Universal Serial Bus (USB) creates a solution for attaching PC peripherals
that balances performance and cost. USB supports three transmission rates:

• 1.5Mb/s
• 12Mb/s
• 480Mb/s

The 1.0 and 1.1 (1.x) versions of USB support only the 1.5 Mb/s and 12Mb/s
speeds. These transmission rates were intended to support low- and medium-
speed peripherals, while the 2.0 version of the USB specification defines a
480Mb/s rate that can support selected high-speed devices, and permits a
larger number of low- or full-speed devices to operate on a single bus. Table 1-2
lists the types of devices that fall into these performance ranges. 

Table 1-2: Applications, Relative Performance Required and Desired Attributes

Performance Applications Attributes

Low Speed:
Interactive Devices
10-100 Kb/s

Keyboard, Mouse
Stylus
Game peripherals
Virtual Reality peripherals

Lower cost
Hot plug
Ease of use
Multiple peripherals

Medium Speed:
Phone, Audio
500-10,000 Kb/s

ISDN
PBX
POTS
Digital audio
Scanner 
Printer

Lower cost
Ease of use
Guaranteed latency
Guaranteed bandwidth
Hot plug
Multiple devices



USB System Architecture

20

Hot Plug and Play Support

Hot Plug and Automatic configuration is crucial to satisfying end user require-
ments. USB can detect the attachment of a new peripheral and automatically
install the relevant software needed to access the device. This process also elim-
inates the need to set switches and jumpers when configuring a peripheral
device and eliminates the need to restart the system when the device is
attached. In short, the peripheral can simply be attached by the user and be
ready for immediate use.

Expandability

Hub devices provide additional ports for attaching other USB devices as illus-
trated in Figure 1-3 on page 22. Hubs can be stand-alone devices, or can be inte-
grated into other USB peripherals such as printers or keyboards. Physical USB
devices that contain hubs and that have one or more internal devices attached to
the hub ports are called compound devices.

Legacy Hardware/Software Support

Older operating systems have no knowledge of USB, so the system designer
must choose whether to provide USB support. Additionally, traditional system
firmware (initialization code, boot code, and BIOS) is based on standard PC leg-
acy hardware and must be adapted to support USB if USB boot support is
desired.

High Speed:
Video, Disk, LAN
25-500 Mb/s

Mass storage
Video conferencing
Imaging
Broadband

Low cost
Hot plug
High bandwidth
Guaranteed bandwidth
Guaranteed latency
Multiple devices
Ease of use

Table 1-2: Applications, Relative Performance Required and Desired Attributes

Performance Applications Attributes



Chapter 1: Design Goals of USB

21

Low Cost

USB can reduce the overall cost of peripheral design and system support. 

Much of this cost reduction on the peripheral side comes from the ability to con-
nect the peripheral directly to a USB port, thereby eliminating the requirement
to design an expansion card to provide a connection for the device. Another
source of cost reduction for both the system and peripheral designers is the con-
nectors and cables. The standard USB cables and connectors create a very large
market for these items and competition between vendors reduces their cost. The
USB serial bus implementation also reduces cost when compared to parallel bus
implementations that require a much larger number of pins and traces.

The system cost savings can be realized by eliminating the cost of the wide vari-
ety of connections that must be supported for standard peripherals such as the
parallel, serial, keyboard, and mouse connectors. In the short term USB has
been added while the older connectors remain. Figure 1-3 on page 22 illustrates
the backplane of a system as it may look sometime in the near future.



USB System Architecture

22

Figure 1-3: USB Device Connections

SCSI
Interface

USB

Graphics
Port

LAN
Interface

Scanner 
Modem Digital Phone

Printer/Hub

Keyboard/Hub



Chapter 1: Design Goals of USB

23

Summary of Key USB Features

Table 1-3 lists the key features that comprise the USB implementation. 

Table 1-3: Key USB Features

Feature Description

Low Cost The USB provides a low-cost solution for attaching 
peripheral devices to PCs.

Hot Pluggable Device attachment is automatically detected by the 
USB and software automatically configures the device 
for immediate use, without user intervention. 

Single Connector Type The USB defines a single connector used to attach any 
USB device. Additional connectors can be added with 
USB hubs.

127 Devices Supports the attachment of 127 devices per USB.

Low Speed, Full Speed, 
and High Speed Devices

The USB 2.0 supports three device speeds: 1.5Mb/s, 
12Mb/s, and 480Mb/s. 

Cable Power Peripherals can be powered directly from the cable. 
5.0vdc power is available from the cable. The current 
available can vary from 100ma - 500ma depending on 
the hub port.

System Resource Require-
ment Eliminated

USB devices, unlike their ISA, EISA, and PCI cousins, 
require no memory or I/O address space and need no 
IRQ lines.

Error Detection and 
Recovery

USB transactions include error detection mechanisms 
that are used to ensure that data is delivered without 
error. In the event of errors, transactions can be retried.

Power Conservation USB devices automatically enter a suspend state after 
3ms of no bus activity. During suspend devices can 
consume no more than 500µa of current. 



USB System Architecture

24

How to Get the USB Specifications

The USB specifications are available from the USB web site at: 

www.usb.org

This web site has the 2.0 version of the USB specification and the device class
specifications, along with other information related to USB.

Support for Four Types of 
Transfers

The USB defines four different transfer types to sup-
port different transfer characteristics required by 
devices. Transfer types include: bulk, isochronous, 
interrupt, and control transfers.

Ability to Extend Bus USB hubs can be installed to add additional ports that 
permit additional devices to be attached.

Table 1-3: Key USB Features

Feature Description



25

2 The Big Picture

The Previous Chapter
Many PCs designed today still implement peripheral devices based on inter-
faces used in the original IBM PC designs of the early 1980s. These implementa-
tions have numerous shortcomings that cause both designers and users
considerable frustration. The previous chapter discussed the primary design
goals of USB 2.0 and reviewed the shortcomings of the legacy implementation.

This Chapter
This chapter provides an overview of the primary concepts of USB transfers
and describes the interaction between USB system software, system hardware,
and USB devices for USB 1.x systems and for USB 2.0 systems. The USB com-
munications process is described, including the concept of the device frame-
work. Each hardware and software element in a USB system is introduced and
its primary functions are described.

The Next Chapter
USB defines a single connector type for attaching all USB peripherals to the host
system. The next chapter introduces the physical aspects of USB connectors and
cables.

Overview

Figure 2-1 on page 26 provides a system view of USB implemented in a PCI-
based system. In this implementation the USB host controller resides on the PCI
bus. The controller acting as a bus master obtains data structures from memory
that describe the USB transactions that have been scheduled by system software
for delivery over the USB.

Figure 2-2 on page 27 depicts a hub-oriented chip set with the USB controller
integrated into the I/O Hub chip. The high-speed link between the I/O Hub
and the Memory Hub permit higher bandwidth between the I/O subsystem



USB System Architecture

26

and memory than a typical PCI bus and may be better suited to meet the band-
width needs of USB 2.0.

Figure 2-1: USB System Implemented in a PCI-Based Platform

 

���

�������

�� ����

!�"
����

�����

�
������


����

�� ����

��� ���

����
����
�	�


�����

�
�

�����

�	


USB
Host Controller
(Root Hub)

CardBus
Bridge

�������

�����

�����
�����
�	����

Keyboard
(Hub)

Monitor
(Hub)

�

�

�

�

�

�

�

����

���

��
���

��������
�	
���
�����

Main
Memory



Chapter 2: The Big Picture

27

Figure 2-2: USB Controller Integrated into I/O Hub Chip

���

��� ��

��� 	
���
�� ���� �� ����

�	� 	
���

������
������

��
���
����

����

��

�
 
�

�������

!�"#

$�%��
������

�&'
������

��
���
����

�	� ���%(�
')����#
�

�#�%
���*�

��+�'�

��,�

��-./ !��0

!��

���
�����1#"�

��%��
��%�"

��%��
��%�"

	�)��
�'

�	�
������

��

�'�2

�'��

3	�

4�5.
�������)�
������

��

�67�

��8

�67�

�	�
�����



USB System Architecture

28

USB 1.x Systems and Devices

This section provides an overview of low- and full-speed system and device
operation. Later portions of the book provide much greater detail regarding the
implementation of these devices.

Low-Speed and Full-Speed Devices

USB 1.0 and 1.1 (i.e., 1.x) systems can support only 1.5Mb/s (low speed) and
12Mb/s (full-speed) transactions as illustrated in Figure 2-3. The host delivers
low- or full-speed transactions depending on the speed of the device being
accessed. 

When full-speed transactions are performed, these transactions are prevented
from reaching the low-speed devices that otherwise might be confused by a
full-speed transaction. Conversely, low-speed transactions can safely be trans-
ferred to full-speed devices. (See Figure 2-4 on page 29.)

Figure 2-3: 1.x Systems Support Only Low- and Full-Speed Devices

�� ������

	
�

�� ������

�� ������ �� ������

�� 	��� ����������

�����
��� ���� 	
��



Chapter 2: The Big Picture

29

Figure 2-4: Full-Speed Transactions Do Not Reach Low-Speed Devices

�� ��

	
�

�� ������

�� �� � � ��� ������

�� 	��� ����������

�����
��� ��

�� ������

	
�

�� ������

�� ������ �� ������

�� 	��� ����������

�����
��� ���� 	
��



USB System Architecture

30

How Transactions Are Generated

USB 1.x system implementations generate USB transactions by fetching and
executing a linked list of data structures (called transfer descriptors) from mem-
ory. Each transfer descriptor defines a USB transaction that software has
requested and scheduled for the purpose of accessing a USB device. For exam-
ple, one transfer descriptor may specify that a USB keyboard be accessed to
check whether a keystroke has occurred, while another descriptor may specify a
data transfer to a printer. In this example, the keyboard is a low-speed device
and the printer is accessed at full speed.

What the Descriptors Contain

Each transfer descriptor contains information that describes a transaction to be
performed. The primary information includes:

• The USB device address
• The type of transaction to be performed (read or write)
• The transfer size
• Speed of the transaction
• The location of the memory data buffer (a full buffer containing data to be

sent to the USB device or an empty buffer where data read from the USB
device is to be placed)

With this information the USB host controller can perform the specified transac-
tion. In the personal computer arena two host controller interfaces were
designed for USB 1.x devices: the Universal Host Controller Interface (UHCI)
and Open Host Controller Interface (OHCI). Each accomplishes the same jobs
but in different ways, and each has its own transfer descriptor definition. See
Figure C-4 on page 470 for details on the transfer descriptor definition for the
UHCI host controller or Figure D-6 on page 486 for the OHCI host controller.

How the Transfer Descriptors Are Fetched

The linked list of descriptors is sometimes called a transaction list or frame list.
During a 1ms interval (called a frame), the host fetches and executes a series of
descriptors. Figure 2-5 on page 31 and Figure 2-6 on page 32 provide a concep-
tual view of the steps taken by the host controller when it fetches and executes
transactions from the frame list. In these examples, the frame list contains trans-
fer descriptors that access a USB keyboard and a USB printer. Note that these
examples do not deal with the entire USB protocol, but rather deal only with the
conceptual process of transaction generation across the USB.



Chapter 2: The Big Picture

31

The first example depicts a keyboard being polled by software to check if a key
has been pressed. The direction of data flow in USB is specified with respect to
the host. Since data is being read by the host, the transaction is termed an IN
transaction. Figure 2-5 illustrates the sequence of events associated with the IN
transaction from the keyboard. 

Previously the keyboard’s USB driver has requested that the keyboard be polled
periodically to determine if the user has pressed a key. The driver also supplies
a memory buffer location where the keyboard data is to be returned. This
request has resulted in the host software creating a transfer descriptor in mem-
ory (Transaction 1 in Figure 2-5) that describes the USB polling operation. The

host controller fetches transaction 1 and decodes the descriptor and executes the
requested IN transaction. The keyboard returns data to the host controller,
which in turn places the data into the keyboard data area in memory. The
pointer to the keyboard data buffer is included within the transfer descriptor.
The keyboard software driver reads the keyboard data buffer to acquire the
data.

The second and third descriptors define transactions that send data to the USB
printer. The direction of data flow in this case is OUT from the host. Figure 2-6
on page 32 illustrates the sequence of events when executing these transactions. 

Figure 2-5: Conceptual View of Transaction Generation — Example 1

������

���������

���	�
����

��� ��������

���������	� �

���������	� �

���������	� �

�� ������

������� ��
����

� � ����

� ���� ����	�
����

�� �

�

�� ���� ���	
�� ���	����

�� ���� �������� �� �����	����

�� ���� ����� � � ��

�� ���� ������� ���� ���� �� ����



USB System Architecture

32

Figure 2-6: Conceptual View of Transaction Generation — Example 2

Memory

����	
���

��
������


��
� ��	�������

���������	� �

���������	� �

���������	� �

�� ������

�������� ���	���

�

� �

�

������� �	�	 �� ���� ���	
�� ���	����

�� ���� �������� �� ��� �����	����

�� ���� ���	
�� ����� ���� ��� ����

�� ���� ����� ���� �� �����

���� ����	�
����

Memory

�Transfer
Descriptors

Host Controller

Transaction 2

���	�
���� �

Transaction 1

PrinterKeyboard

Target

2
4

3

1

������� ���� �� ���� ����	�
 ��
������

�� ���� ��������
 �� ��� ����
�����

�� ���� ����	�
 ���� ����� �� ������

���� ���� ������

 � ���� 
���
 ���� �� ������

���� ����	�
����



Chapter 2: The Big Picture

33

Frame Generation

Figure 2-7 illustrates how the controller fetches each frame list on 1ms intervals.
Note that each 1ms frame consists of 12,000 bit times at the 12Mb/s bit rate,
during which transactions are performed. A 12MHz clock increments a counter
that generates a carry output when the count reaches 12,000, thereby creating a
1kHz clock (1ms periods). The carry output increments another counter con-
taining a frame number that is used as an address location to fetch the first
transfer descriptor in a linked list of descriptors. Each transfer descriptor con-
tains a link address to the next descriptor in the list. In this way, each descriptor
in the list is fetched and executed, resulting in a series of USB transactions dur-
ing the current frame. 

Figure 2-7: Conceptual View of 1ms Frame Generation

1ms

�������

12MHz

������

����� ��	


��	� ��

����� ������

����
��

�� � ���

���

�� � ���

�� � ���

�� 	 ���

�� 
 ���

�� � ���

�� � ���

������

���

���

���



USB System Architecture

34

Sharing the Bus

The collection of devices residing on the bus must share the bus bandwidth.
Figure 2-8 on page 35 depicts a single frame during which each USB device is
getting a portion of the bus bandwidth. Note that some devices require bus
access every frame while others may require use of the bus on a periodic basis.
To avoid possible confusion, note that devices are accessed only when client
software has requested data transfer to or from a given device.

This example illustrates every device being accessed in the same frame — not a
likely circumstance in this case. Also, some devices require USB bandwidth
every frame, thus requiring isochronous transactions (e.g., USB speakers). Other
devices may require the transfer of large blocks of data but at no particular time,
so their use of the bus is asynchronous in nature and does not require guaran-
teed bandwidth (e.g., USB printers). When an application requires large
amounts of USB bandwidth every frame, little or no bandwidth may be left for
devices such as printers. In such cases the transfer of data to a printer may slow
or even stop temporarily, until an application performing isochronous transac-
tions terminates.

Bandwidth Consideration Summary

The theoretical bandwidth available during each 1ms interval is 12,000 bits/ms,
or 1.5KB/ms (1.5MB/s). However, overhead associated with performing trans-
actions significantly reduces the efficiency of the bus. Consider the typical over-
head associated with different types of transfers (including worst-case
propagation delay):

• Isochronous transactions = 9 bytes
• Interrupt transactions = 13 bytes (FS) and 19 bytes (LS)
• Bulk transactions = 13 bytes
• Control (3 stage transfer) = 45 bytes (FS) and 63 bytes (LS)

To promote fairness during bandwidth sharing, the specification defines maxi-
mum packet sizes for various types of transfers. In general, isochronous trans-
fers can have a maximum data payload of 1023 bytes and all others have a
maximum payload of 64 bytes. Bus efficiency when performing transfers with
various packet sizes is listed in Table 2-1 on page 36.



Chapter 2: The Big Picture

35

Figure 2-8: Example of USB Devices That Share Bus Bandwidth

����
������	
�

��	��
�
����

���
������	
�

�
	����
�����

�����	� ����

�����������

 �!��	������

��� ��	�


Stereo
Audio

Bulk
Transfers

S
O
F

T
x
V
o
ic
e

T
x
L
in
e

R
x
V
o
ic
e

R
x
L
in
e

B
u
s

M
g
m
t

K
e
y
b
rd

M
o
u
s
e



USB System Architecture

36

Another important aspect of USB performance is the available bandwidth rela-
tive to the maximum data packet size. For example, while the bus efficiency is
high for an isochronous transaction with a maximum payload of 1023 bytes, this
transfer takes roughly 87% of the overall bus bandwidth. In contrast, a single
bulk transaction with a maximum data payload of 64 bytes takes just over 5% of
the available bandwidth. Thus, when a maximum bandwidth isochronous
transaction is running, the remaining bandwidth permits just two more maxi-
mum-sized bulk transfers. Now imagine a scenario such as the one illustrated in
Figure 2-8 on page 35. In this example, the bandwidth available may not be suf-
ficient to support even the isochronous devices, without regard to the other
devices requiring bus bandwidth.

The USB specification permits up to 90% of the overall bandwidth to be allo-
cated to periodic transactions (isochronous and interrupt), while control trans-
fers have a guaranteed reservation for up to 10% of the overall bandwidth. Bulk
transfers simply get the bandwidth that is left over after all of the currently
scheduled transactions complete. Considering the bandwidth limitations, the
number of devices that can be supported adequately by USB 1.x is much lower
than might be expected.

Table 2-1: Approximate Bus Efficiency of Transactions with Various Data Payloads

Transfer Type Max. Packet Size Efficiency

Isochronous 1023 bytes ~99%

512 bytes ~98%

64 bytes ~86%

Other 64 bytes ~82%

32 bytes ~69%

8 bytes ~36%



Chapter 2: The Big Picture

37

2.0 Systems and Devices

Systems based on USB 2.0 are designed to support high-speed, full-speed, and
low-speed devices. This provides backward compatibility to 1.x devices, while
significantly extending USB performance, and consequently, increasing the
number of devices that can be supported.

USB 2.0 is backward compatible with 1.x devices and has many of the same
characteristics:

• uses the same connectors
• uses FS cables for HS devices
• employs the same communications model (token/data/handshake)
• uses the same device attachment recognition
• uses the same device configuration model

The 480Mb/s transfer rate of USB 2.0 is 40 times faster than the 12Mb/s trans-
fers of USB 1.x. The faster transfers are intended to permit a greater number of
USB devices on a single bus. Additionally, both 1.x devices in HS system low-
speed (LS) devices and full-speed (FS) devices are supported without signifi-
cantly impacting the performance of high-speed (HS) devices. Figure 2-9 on
page 37 illustrates a USB 2.0 system with devices attached to a variety of ports.

Figure 2-9: USB 2.0 System with Low-, Full-, and High-Speed Devices Attached

��� ���� 	�
������

��� ����� ��

�� ��

�� �� ��� �� �

�� ���� ���� �� �� ��

�� ���� ��

�	� ���



USB System Architecture

38

Low-Speed and Full-Speed Devices in a 2.0 System

Low-speed and full-speed devices may also be attached to 1.x hub ports or 2.0
HS hub ports. Figure 2-10 on page 38 illustrates the ways in which these devices
may be attached to the bus. 

Figure 2-10: Low- and Full-Speed Devices Attached to Ports of the Root, 1.x, and 2.0 Hubs

��� ���� 	�
������

��� ����� ��

�� ��

�� �� ��� ���

�� ���� ���� �� �� ��

�� ���� ��

�	� ���

��� ���� 	�
������

��� ����� ��

�� ��

�� �� ��� ���

�� ���� ���� �� �� ��

�� ���� ��

�	� ���



Chapter 2: The Big Picture

39

When LS/FS devices are attached to FS hubs with no HS connection between
the host and the FS hub, the devices operate just as they did in 1.x systems.
However, when a LS/FS device is attached to a HS port (not a root port), split
transactions are used to access the device. A split transaction sequence consists
of three primary steps:

1. The host delivers a HS Start Split transaction to the high-speed hub. This
transaction contains the LS/FS token packet and data if the transaction is an
OUT to the device.

2. The hub performs the LS/FS transaction to the device and saves completion
status (data for IN transactions or handshake results for OUT transactions).
During this time the host can transfer information to other devices on the
bus.

3. When the host knows that the LS/FS transaction has had time to complete,
it delivers a HS Complete Split transaction to the hub to obtain the LS/FS
transaction results. The transaction contains the same token packet as deliv-
ered in the Start Split transaction. The hub uses the token to match the cor-
rect transaction in the event that multiple split transactions are pending
completion. The hub then returns either data (IN transaction) or a hand-
shake (OUT transaction) to verify the results of the transaction.

Figure 2-11 illustrates a split IN transaction sequence that illustrates the three
stages described previously. For details regarding split transactions see “The
Structure of Split Transactions” on page 290.

Figure 2-11: Split IN Transaction Sequence

�� ������	

�� � � �

���� ��� �����

SSPLIT IN Token CSPLIT IN Token� DataX

IN Token DataX ACK

�

�



USB System Architecture

40

Example 2.0 Host Controller Support for LS/FS Devices

A 2.0 host controller can be implemented in a variety of ways to support LS and
FS devices. The host controller must support low- and full-speed devices
attached to any root hub port. Figure 2-12 illustrates a possible 2.0 host control-
ler implementation that incorporates three 1.x controllers. Thus, any low- or
full-speed device attached to a root port can be accessed via the 1.x controllers.

In this implementation the 2.0 host controller must monitor each port to detect
the speed of the device connected to the root hub. If a LS or FS device is con-
nected, the 2.0 host controller must then connect the port to one of the 1.x con-
trollers.

An advantage of this type of solution is that each of the three controllers inde-
pendently fetches and executes its own frame list. This makes it possible to have
three concurrent accesses to LS/FS devices.

Figure 2-12: Example 2.0 Controller with Three 1.x Host Controllers Used for 
Low- and Full-Speed Support

��� ���� 	�
������

����� ��� 	
������ �
�� 	
���
�������������	
���
��

���� �� �
����� �
 ����
�� ��� ����� ����	�� �� 
�� ����� �����


� ����� ����	�� �� �� �		����� 	
�	������ �

��� 	�� ���� 	�� ���� 	�� �

�� ����� ��� �� ����� ����� ����� ���



Chapter 2: The Big Picture

41

High-Speed Devices in a 2.0 System

High-speed devices like low- and full-speed devices may also be attached to
any 2.0 host controller port or 2.0 hub operating at high speed. Figure 2-13 illus-
trates a collection of high-speed devices attached to high-speed ports. Transac-
tions generated by a high-speed (HS) host controller are repeated to all HS
devices, while these transactions are blocked from reaching full- and low-speed
devices.

High-Speed Devices Attached to 1.x Ports

High-speed devices that connect to full-speed ports must operate correctly at
full speed. Note that even though the device must operate at full speed it may
be limited to supporting only accesses via endpoint zero (e.g., reading its
descriptors). Thus, a HS device is not required to have full functionality at full
speed.

Figure 2-13: Example of High-Speed Devices Attached to 2.0 Root Hub and High-Speed Hub

��� ���� 	�
����� �

��� ���� �

�� ��

�� �� ��� �� �

�� ���� � �� �� �� � 

�� ��� �

�	� ���



USB System Architecture

42

High-Speed Transactions and Microframe Generation

The method of generating accesses to high-speed transactions is conceptually
the same as for 1.x systems except transactions are scheduled and performed
during 125µs intervals called microframes. Figure 2-14 illustrates the generation
of microframes and how the host controller fetches transfer descriptors. An
oscillator running at 480MHz increments a counter that produces a carry output
after 60,000 clocks (at 125µs intervals). This carry output advances the micro-
frame count, that in conjunction with the µframe base address register, selects a
memory pointer that contains the memory address of the first transfer descrip-
tor in the microframe list. 

High-Speed Bandwidth Summary

The theoretical bandwidth available during each 125µs interval is 60,000 bits, or
7.5KB per 125µs interval, or 60KB/ms (60MB/s). See Figure 2-15 on page 43.
Since high-speed transactions use the same packets, overhead is similar when
considering packets alone. However, the propagation delay in the high-speed

Figure 2-14: Conceptual View of Host Controller Generation of Microframes



Chapter 2: The Big Picture

43

environment represents a much larger number of bit times due to the much
higher frequency. For example, compare the overhead associated with different
types of transfers at high speed (below) with the full-speed overhead listed on
page 34:

• Isochronous transactions = 38 bytes
• Interrupt transactions = 55 bytes
• Bulk transactions = 55 bytes
• Control (3 stage transfer) = 173 bytes

The specification redefines the maximum packet size for some types of trans-
fers. Table 2-2 lists the maximum packet sizes and the resulting bus efficiencies.

Figure 2-15: Bandwidth Comparison Between 12MHz Frames and 480MHz Microframes

Table 2-2: Approximate Bus Efficiencies of Transactions with Various Data Payloads

Transfer Type Max. Packet Size Efficiency

Isochronous 1024 bytes ~96.4%

Interrupt 1024 bytes ~95.9%

Bulk 512 bytes ~90.3%

Control 64 bytes ~27.0%

����� �� ���	
 ���
���

����� �� ���	
 ���
��

���������	
�

��������	
�



USB System Architecture

44

Bus efficiency is lower in the high-speed environment compared with full
speed. More importantly, the amount of data that can be transferred in a given
unit of time is much greater with high-speed transactions. Thus, available band-
width relative to the maximum data payloads is much greater in the high-speed
environment. For example, an isochronous transaction with a maximum pay-
load of 1024 bytes consumes only 13.6% of the available bus bandwidth, com-
pared with 87% in the full-speed environment. This makes it feasible to support
a far greater number of USB devices on a single bus.

The USB specification permits up to 80% of the overall high-speed bandwidth
to be allocated to periodic transactions (isochronous and interrupt), and control
transfers have a guaranteed reservation for up to 20% of the overall bandwidth.
Bulk transfers get the bandwidth left over after all of the currently scheduled
transactions complete. 

The Players

Figure 2-16 on page 45 illustrates the hardware and software elements involved
in the USB system. All USB transactions are initiated by USB software. These
accesses are typically originated by a USB device driver that wants to communi-
cate with its device. The USB driver provides the interface between USB device
driver and the USB host controller. This software is responsible for translating
client requests into transactions that send information either to or from a target
USB device.

The primary hardware and software elements associated with a USB solution
includes:

• USB Hardware
• USB Host Controller/Root Hub
• USB Hubs
• USB Devices

• USB Software
• USB Device Drivers
• USB Driver
• Host Controller Driver

The following sections describe the role of each component involved in USB
transfers. Refer to Figure 2-16 on page 45 during the following discussions.
More detail regarding the role of each hardware and software component can
be found in subsequent chapters.



Chapter 2: The Big Picture

45

 

USB Client Drivers

USB device drivers (or client drivers) issue requests to the USB bus driver via I/
O Request Packets (IRPs). These IRPs initiate a given transfer to or from a target
USB device. For example, a USB keyboard driver must initiate an interrupt
transfer by establishing an IRP and supplying a memory buffer into which data
will be returned from the USB keyboard. Note that the client driver has no
knowledge of the USB serial transfer mechanisms.

Figure 2-16: Communication Flow in a USB System

������ �	
����

Host System USB Device

��������
�	
��

�� ������
�	
��

�� ���
������	��
�	
��

������	�

���
�	����� ������

���
������ �	
����

��� �	��
�	��	�������

��� ��� ����
���

�	����� �	���������	� ��	�

�������� �	���������	� ��	

���� ��� 	 
�� ��� ����



USB System Architecture

46

USB Bus Driver

The USB bus driver knows the characteristics of the USB target device and how
to communicate with the device via USB. The USB characteristics are detected
by the USB driver when it parses the device descriptors during device configu-
ration. For example, some devices require a specific amount of throughput dur-
ing each frame, while others may only require periodic access every nth frame.

When an IRP is received from a USB client driver, the USB driver organizes the
request into individual transactions that will be executed during a series of bus
intervals called frames (to low- and full-speed devices) and microframes (for
high-speed devices). The USB driver sets up the transactions based on its
knowledge of the USB device requirements, the needs of the client driver, and
the limitations/capabilities of the USB.

Depending on the operating environment, the USB driver may be shipped with
the operating system or added as an extension via a loadable device driver.

USB Host Controller Driver

The USB host controller driver (HCD) schedules transactions to be broadcast
over the USB. Transactions are scheduled by software (host controller driver)
via a series of transaction lists. Each list consists of pending transactions tar-
geted for one or more of the USB devices attached to the bus and defines the
sequence of transactions to be performed during each frame or microframe. The
USB host controller fetches and executes a new list every 1ms, or 125µs. Note
that a single block transfer requested by a USB client may be performed as a
series of transactions that are scheduled and executed during consecutive
(µ)frames. The actual scheduling depends on a variety of factors including
device speed, type of transaction, transfer requirements specified by the device,
and the transaction traffic on the USB bus.

The USB host controller initiates transactions via its root hub or hubs. Each
frame begins with a start of frame (SOF) packet and is followed by the serial
broadcast of all transactions contained within the current list. For example, if
one of the requested transactions is a request to transfer data to a USB printer,
the host controller would obtain the data to be sent from a memory buffer sup-
plied by the client software and transmit the data over the USB. The hub portion
of the controller converts the requested transactions into the low-level protocols
required by the USB. 



Chapter 2: The Big Picture

47

USB Host Controller/Root Hub

All communication on USB originates at the host under software control. The
host hardware consists the USB host controller, which initiates transactions
over the USB system, and the root hub, which provides attachment points (or
ports) for USB devices. Three USB host controller designs have been developed:

• Universal Host Controller Interface (UHCI) -- 1.x
• Open Host Controller Interface (OHCI) -- 1.x
• Enhanced Host Controller (EHCI) -- 2.0

Each of these controllers perform the same basic job although in slightly differ-
ent ways. Appendix C and D discuss the operation of the 1.x host controllers.
The EHCI specification was under non-disclosure during the writing of this
book. Check MindShare’s web site at www.mindshare.com for a white paper on
the EHCI implementation that will be developed once the specification is
released.

The Host Controller

The host controller is responsible for generating the transactions that have been
scheduled by the host software. The host controller software driver builds a
linked list of data structures in memory that defines the transactions that are
scheduled to be performed during a given frame. These data structures, called
transfer descriptors, contain all of the information the host controller needs to
generate the transactions. This information includes:

• USB Device Address
• Type of Transfer
• Direction of Transfer
• Address of Device Driver ’s Memory Buffer

The host controller performs writes to a target device by reading data from a
memory buffer (supplied by the USB device driver) that is to be delivered to the
target device. The host controller performs a parallel to serial conversion on the
data, creates the USB transaction, and forwards it to the root hub to send over
the bus.

If a read transfer is required, the host controller builds the read transaction and
sends it to the root hub. The hub transmits the read transaction over the USB.
The target device recognizes that it is being addressed and that data is being
requested. The device then transmits data back to the root hub, which forwards



USB System Architecture

48

the data on to the host controller. The host controller performs the serial to par-
allel conversion on the data and transfers the data to the device driver ’s mem-
ory buffer.

Note that the USB root hub and target devices perform error checks during a
transaction. Errors detected are recognized by the root hub, forwarded to the
host controller to be logged and reported to the host software. 

The Root Hub

Transactions generated by the host controller are forwarded to the root hub to
be transmitted to the USB. Consequently, every USB transaction originates at
the root hub. The root hub provides the connection points for USB devices and
performs the following key operations:

• controls power to its USB ports
• enables and disables ports
• recognizes devices attached to each port
• sets and reports status events associated with each port (when polled by

host software)

The root hub consists of a hub controller and repeater as illustrated in Figure 2-
17 on page 49. The hub controller responds to accesses made to the hub itself,
for example, requests by the host software to apply or remove power to a port.
The repeater forwards transactions to and from the USB and the host controller.



Chapter 2: The Big Picture

49

 USB Hubs

In addition to the root hub, USB systems support additional hubs that provide
one or more USB ports for attaching other USB devices. USB hubs may be inte-
grated into devices such as keyboards or monitors (called compound devices),
or implemented as stand-alone devices as illustrated in Figure 2-18. Further-
more, hubs may be bus powered (i.e. derive power for themselves and all
attached devices from the USB bus) or may be self-powered. Bus-powered hubs
are limited by the amount of power available from the bus and can therefore
support a maximum of four USB ports. Chapter 4 discusses USB power issues.

Figure 2-17: Block Diagram of Major Root Hub Functions

Data to/from Host Controller 

Hub Controller

Repeater

Power Supply

Port 1

D
ata

O
n/O

ff

O
n/O

ff

Data

Power
from 

System

Port 2

Enable/Disable



USB System Architecture

50

 Hubs contain two major functional elements: 

• hub controller 
• repeater

Figure 2-19 on page 51 illustrates these functions. 

Figure 2-18: USB Hub Types

��� ����

	�
������

�	� ���

���� ���

���

�������� 	
� ����

���

������ ������ ������ ������ ������



Chapter 2: The Big Picture

51

Hub Controller

The hub controller contains a USB interface, or serial interface engine (SIE). It
also contains the descriptors that software reads to identify the device as a hub.
The hub controller gathers hub and port status information also read by the
USB host software to detect the connection and removal of devices and to deter-
mine other status information. The controller also receives commands from host
software to control various aspects of the hub’s operation (e.g., powering and
enabling the ports).

Figure 2-19: Primary Hub Functions

�������� 
��� ������������ �� �����

������ ��	�
���


��������� �� ����� 
��������� 
��� �����

��� ����	�

�	

������
Enable/Disable 



USB System Architecture

52

Hub Repeater

Refer to Figure 2-20. Bus traffic arriving at the hub must be forwarded on in
either the upstream (toward the host) or downstream (away from the host)
direction. Transmissions originating at the host will arrive on the hub’s root
port and must be forwarded to all enabled ports. When a target device responds
to a host-initiated transaction, it must transmit a response upstream, which the
hub must forward from the downstream port to the root port.

Figure 2-20: Hub Repeater Performing Downstream and Upstream Connectivity

Downstream
Connectivity

Upstream
ConnectivityRoot

Port

Downstream
Ports

Downstream
Ports

Root
Port

Host

Target



Chapter 2: The Big Picture

53

Hub’s Role in Configuration

Hubs also play a pivotal role in the hot attachment/detachment (automatic
detection and configuration during runtime) of USB devices. Hubs must recog-
nize that a device has been attached or detached and report the event when host
software polls the hub.

USB Devices

USB devices contain descriptors that specify a given device’s attributes and
characteristics. This information specifies to host software a variety of features
and capabilities that are needed to configure the device and to locate the USB
client software driver. The USB device driver may also use device descriptors to
determine additional information needed to access the device in the proper
fashion. This mechanism is referred to as the Device Framework and must be
understood by software in order to configure and access the device correctly.
See the section entitled “Device Framework” on page 63 for a more complete
discussion. As mentioned previously, USB devices can be implemented either as
high-speed, full-speed or low-speed devices.

High-Speed Devices

High-speed devices see only high-speed transactions. Low- and full-speed
devices are accessed via high-speed split transactions delivered to high-speed
hubs. The high-speed hubs translate the split transactions into low- or full-
speed transactions and deliver them to the target devices.

Full-Speed Devices

Full-speed devices see all transactions broadcast over the USB and can be
implemented as full-feature devices. These devices accept and send serial data
at the maximum 12Mb/s rate.

Low-Speed Devices

Low-speed devices are limited in not only throughput (1.5Mb/s) but feature
support. Furthermore, low-speed devices only see USB transactions that follow
a preamble packet. Low-speed hub ports remain disabled during full-speed
transactions, preventing full-speed bus traffic from being sent over low-speed
cables. Preamble packets specify that the following transaction will be broad-
cast at low speed. Hubs enable their low-speed ports after detecting a preamble
packet, permitting low-speed devices to see the low-speed bus activity.



USB System Architecture

54

USB Communications Model

Unlike devices that reside on other common bus structures, USB devices do not
directly consume system resources. That is, USB devices are not mapped into
memory or I/O address space, nor do they use IRQ lines or DMA channels. Fur-
thermore, all transactions originate from the host system. The only system
resources required by a USB system are the memory locations used by USB sys-
tem software and the memory and/or I/O address space and IRQ line used by
the USB host controller. This eliminates much of the difficulty encountered with
standard peripheral implementations that require a considerable amount of I/O
space and a large number of interrupt lines.

Communications Flow

Figure 2-21 on page 56 illustrates the basic communication flow and the system
resources used by USB systems. The USB client initiates a transfer when it calls
USB system software and requests a transfer. USB client drivers supply a mem-
ory buffer used to store data when transferring data to or from the USB device.
Each transfer between a given register (or endpoint) within a USB device and
the client driver occurs via a communication pipe that USB system software
establishes during device configuration. USB system software splits the client’s
request into individual transactions that are consistent with the bus bandwidth
requirements of the device and the USB protocol mechanisms.

The requests are passed to the USB host controller driver, which in turn sched-
ules the transaction to be performed over the USB. The host controller performs
the transaction based on the contents of a transfer descriptor that is built by the
HCD. The HCD knows all the information necessary to perform the required
transaction via the USB. The key information contained within a transfer
descriptor includes:

• Address of the target USB device
• Speed of the target device
• Type of transfer to be performed
• Size of the data packet
• Location of the client’s memory buffer

The host controller may have registers that are mapped into the processor ’s I/O
or memory address space. These registers control the operation of the host con-
troller and must be loaded with values by the HCD to ensure desired operation.
For example, a register is loaded with an address pointer that specifies the



Chapter 2: The Big Picture

55

memory location where the transfer descriptors reside.

The host controller fetches the transfer descriptors that have been built by the
host controller driver. Each descriptor defines a given transaction that must be
performed to satisfy a client’s transfer request. The host controller generates the
USB transaction that is specified by each transfer descriptor. Each transaction
results in data being transferred either from the client buffer to the USB device
or from the device to the buffer depending on the direction of the transfer.
When the entire transfer has completed, USB system software notifies the client
driver.

Transfers, IRPs, Frames, and Packets

Figure 2-23 on page 59 illustrates the mechanisms used during the USB commu-
nication process and the relationships that exist between each layer of the USB
system. Transfers are initiated by the client driver when it issues a transfer
request to the USB driver. Ultimately, the transaction is performed via the low-
level packetized transactions over the USB. The following sections discuss each
layer involved in completing a USB transfer.

Transfers

Each USB function is designed with a collection of registers, or endpoints, used
by the client driver when accessing its function. Each endpoint has particular
transfer characteristics that it supports. For example, when transferring infor-
mation to a speaker, the data transfer must continue at a constant data rate to
prevent distortion of the audio. Other endpoints may have different characteris-
tics and thus require a different transfer type. The transfer types supported by
USB include:

• Isochronous Transfers
• Bulk Transfers
• Interrupt Transfers
• Control Transfers

Client drivers understand the nature of the transfer related to each endpoint
associated with its function, as does the USB driver. This information is deter-
mined by reading descriptors from the device. Chapter 6 describes the unique
characteristics of each transfer type.



USB System Architecture

56

 

Figure 2-21: The Communications Model

USB
Client

USB
Driver

xHCI
Driver

USB
Client

USB
Client

Memory
Address
Space

I/O
Address
Space

Transfer R
equests USB

Host
Controller

Hub

Device

Device

Device

Host Controller
Registers

Tr
an

sf
er

 D
es

cr
ip

to
rs

Data Transfers



Chapter 2: The Big Picture

57

The USB Driver, IRPs, and Frames

When a client driver wishes to perform a transfer to or from a given endpoint, it
calls the USB driver to initiate the transfer. The requested transfer is called an I/
O Request Packet (IRP). Some transfers consist of a large block of data. Since
USB is a shared bus (i.e., many devices use the same bus at the same time), a sin-
gle device cannot typically perform an entire block transfer across USB at one
time. Rather, a transfer is typically split up and performed in segments (called
transactions) over a longer period of time. This ensures that a portion of the
USB bandwidth can be allocated for the other USB devices residing on the bus.

USB communication is based on transferring data at regular (1ms) intervals
called frames. Each USB device requires that a portion of the USB bandwidth be
allocated during these 1ms frames. Bandwidth allocation depends on the
required throughput of the device (as specified by device descriptors) and the
available USB bandwidth not used by other USB devices. As each USB device is
attached and configured, system software parses its device descriptors to deter-
mine the amount of bus bandwidth it requires. Software checks the remaining
bandwidth and if the device’s requirements can be satisfied, it is configured. If
the bandwidth required by the device is not available, due to bus bandwidth
already allocated to other devices previously attached, the device will not be
configured and the user will be notified.

Figure 2-22 on page 58 illustrates a community of devices attached to the USB
and the variety of potential transactions that could be performed during a sin-
gle 1ms frame. This is a contrived example to illustrate the shared nature of the
USB frame. Not every USB device will necessarily transfer data during each
frame. For example, host software will poll the keyboard every nth frame to
check for keystrokes. Devices are allocated a portion of the overall bus band-
width that they require during each frame. This will likely result in large bulk
transfers, such as print jobs, being split over a fairly large number of 1ms
frames. The actual number of frames required depends on the transfer capabil-
ity of the printer’s USB interface, specified limitations placed on bulk transfers,
and the amount of bus bandwidth being used by other devices currently
installed on the USB.



USB System Architecture

58

Figure 2-22: USB Devices Performing Transfers During Frame 

����
������	
�

��	��
�
����

���
������	
�

�
	����
�����

�����	� ����

�����������

 �!��	������

��� �����

������
���	�


���
��������

�
�
�


�
�
�
	�
�


�
�
	�
�

�
�
�
�
	�
�

�
�
�
	�
�



�
�

�
�
�
�

�
�
�
�
��

�
�
�
�
�



Chapter 2: The Big Picture

59

The Host Controller Driver and Transactions

The host controller driver receives the packet requests from the USB driver and
schedules them to be performed during a series of frames. The scheduling order
is based on an algorithm defined by the host controller driver. The algorithm is
based on USB transfer capabilities and limitations (to be discussed in subse-
quent chapters).

Scheduling is performed by building a series of data structures (called transfer
descriptors) that define each sequential transaction to be performed over the
USB. The host controller reads and interprets these transfer descriptors and exe-
cutes the USB transaction described.

 

Figure 2-23: Relationship Between IRPs, Transfers, Frames, and Packets

Transaction
1-0

Transaction
1-0

Transaction
1-1

Transaction
1-2

Trans.
2-0

Trans.
2-0

Trans.
2-1

Trans.
2-1

Trans.
2-2

Trans.
2-2

Trans.
2-3

Trans.
2-4

Transaction
1-2

Transaction
1-1

I/O Request Packet 1

Frame 1 Frame 2 Frame 3

I/O Request Packet 2

USB 
Client
Driver

USB 
Client
Driver

USB
Driver

Host
Controller

Driver

USB Host
Controller

Token
Packet

Token
Packet

Data Packet Data PacketHandshake
Packet

Handshake
Packet



USB System Architecture

60

The Host Controller and Packets

The host controller and root hub generates transactions over the USB. Transac-
tions consist of a series of packets that typically include token packets, data
packets, and handshake packets. Refer to Chapter 7 for details regarding trans-
actions and packets.

Device Framework (how devices present themselves to software)

USB has been designed to promote class device driver implementations. A set
of devices that have similar attributes and services are defined as belonging to a
given class of device. These common groupings of devices have a common class
driver that can accommodate all devices within the class. 

Device Descriptors

A device describes itself to host software via a number of standard descriptors,
illustrated in Figure 2-24 on page 61. These descriptors include:

• Device Descriptor — Each device has a single device descriptor containing
information about the default communications pipe that is used to config-
ure the device, along with general information about the device. The device
descriptor also identifies the number of possible configurations (one or
more) that a device supports. 

• Configuration Descriptor — A device has a configuration descriptor for
each configuration that it supports. For example, a high-power device may
also support a low-power mode, resulting in a configuration descriptor for
each power mode. The configuration descriptor includes general informa-
tion about the configuration and defines the number of interfaces for the
device when used in this configuration.

• Interface Descriptor — A given configuration may have one or more inter-
faces that it supports. An example of a multiple interface device could be a
CD-ROM, in which case three device drivers may be used to access the dif-
ferent functional devices: one device driver for the device’s mass storage
interface (for storing files), one for the audio device (for playing music
CDs), and one for the video image driver (for displaying images). 

Interface descriptors provide general information about this interface. They
also indicate the class of device supported by this particular interface and



Chapter 2: The Big Picture

61

specify the number of endpoint descriptors used when communicating
with this interface.

• Endpoint Descriptors — A device interface contains one or more endpoint
descriptors, each of which defines a point of communication (e.g., a data
register). The endpoint descriptor contains information, such as the transfer
type supported by the endpoint (i.e., isochronous, bulk, interrupt, or con-
trol), and the maximum transfer rate supported.

• String Descriptors — String descriptors can be defined for the overall
device, for a given configuration, and/or for each interface definition.
These string descriptors describe the configuration and interfaces in uni-
code that can be displayed and read by the user.

• Class-Specific Descriptors — Some device classes require descriptors
beyond the standard descriptors defined by the USB specification. These
descriptors are defined by the relevant device class specification (not
shown).

Figure 2-24: Standard Descriptors

������
�������	
�

�
����
�������	
�

��	�����
�������	
�

����
��������

�����
�	����

��������

�
����
�	����

��������

��	�����
�	����

��������

��
���	
�	����

��������

������ �
�	����

��������

����
��������

����
��������

��	�����
�������	
�

����
��������

��	�����
�	����

��������

����
��������

����
��������



USB System Architecture

62

Figure 2-25: Standard Descriptors with Two Configurations

�
��

��
�

�
��

��
��
	

�

�

�

��
�

�
��

��
��
	

�

��
	�
��

��
�
��

��
��
	

�

�
��
�

�
��

��
��
�

�
��

�
�

�
	��
��

�
��

��
��
�

�

�

��
�

�
	��
��

�
��

��
��
�

��
	�
��

��
�	
���

�
�
��

��
��
�

�
�

��

�	
�
	��
��

�
��

��
��
�

�
��
��
��

�	
���

�
�
��

��
��
�

�
��
�

�
��

��
��
�

�
��
�

�
��

��
��
�

��
	�
��

��
�
��

��
��
	

�

�
��
�

�
��

��
��
�

��
	�
��

��
�
	��
��

�
��

��
��
�

�
��
�

�
��

��
��
�

�
��
�

�
��

��
��
�

�

�

��
�

�
��

��
��
	

�

��
	�
��

��
�
��

��
��
	

�

�
��
�

�
��

��
��
�

�

�

��
�

�	
���

�
�
��

��
��
�

��
	�
��

��
�
	��
��

�
��

��
��
�

�
��
�

�
��

��
��
�

�
��
�

�
��

��
��
�

��
	�
��

��
�
��

��
��
	

�

�
��
�

�
��

��
��
�

��
	�
��

��
�	
���

�
�
��

��
��
�

�
��
�

�
��

��
��
�

�
��
�

�
��

��
��
�



Chapter 2: The Big Picture

63

Figure 2-25 on page 62 illustrates another set of descriptors. In this example,
two separate configurations are defined, each of which includes two interface
descriptors. This illustration like the previous does not show any class-specific
descriptors that may be required by some device classes.

Device Framework

The device framework provides three logical layers that describe the relation-
ship between the host and device hardware and software. Figure 2-26 on page
64 illustrates these layers and the relationship between the host and a given
USB device. The layered approach helps explain the relationships between the
different pieces of host software and the responsibilities each has in the USB
system. The separate layers are provided to promote understanding of the USB
communication mechanisms and are discussed in the following sections.

USB Bus Interface Layer

The USB bus interface layer provides the low-level transfer of data over the USB
cables. This layer consists of the:

• physical connection
• electrical signaling environment
• packet transfer mechanisms

This layer represents the actual transfer of data across the USB cable between
the host system and the USB devices. The host side consists of the USB host con-
troller and root hub, while the USB side consists of the USB interface within the
device. Details related to the transfer of data across the USB cable are covered in
later chapters.



USB System Architecture

64

 

USB Device Layer

The USB device layer represents the portion of USB that comprehends the
actual USB communication mechanism and the nature of the transfers required
by a USB functional device. This layer consists of USB system software on the
host side and a logical view of the USB device on the device side. USB system
software views a logical device as a collection of endpoints that compose a
given functional interface.

USB system software provides the services needed to interface client software
with its USB function. USB system software has specific knowledge of the USB
transfer mechanisms and must allocate bus bandwidth for the community of
USB devices. The logical USB device represents the collection of endpoints
through which a client communicates with its function. USB system software

Figure 2-26: Device Framework — Software’s View of Hardware

������ �	
����

Host System USB Device

��������
�	
��

�� ������
�	
��

�� ���
������	��
�	
��

��������

�	

������ ������

�	

	����� 	������

�	
 ����
��������������

�	
 
�� ��������

������ ������������ ����

������� ������������ ���

(USB Drv & Host Cntl Drv)



Chapter 2: The Big Picture

65

views these endpoints via the standard descriptors, which are parsed by the
USB system software to obtain the transfer characteristics of a given device.
These characteristics in conjunction with system software’s knowledge of the
USB transfer mechanisms permit bus bandwidth to be reserved for each func-
tional device as it’s configured.

USB system software performs a variety of key functions including:

• Device attachment/detachment detection
• Device configuration
• Bandwidth allocation
• Managing control flow between client and device
• Managing data flow between client and device
• Collecting status and transaction statistics
• Transaction scheduling
• Controlling the electrical interface (e.g., limited cable power management)

Note that one set of USB system software exists in the system to manage
accesses to all USB devices attached to the USB bus. USB system software con-
sists of the following entities: 

• USB Driver (USBD) — provides interface and services for client software
drivers, allocates bus bandwidth, and manages configuration process.

• USB Host Controller Driver — controls operation of the host controller,
schedules transactions, and monitors completion status of transactions.

A brief description of the primary jobs that each performs is also provided. A
more comprehensive description of these software layers are provided in Chap-
ter 22, entitled "Overview of USB Host Software," on page 421.

Function Layer

This layer represents the relationship between client software and a given
device’s functional interface. Each interface consists of a particular class of
device that a matched class driver is designed to manipulate. USB client soft-
ware cannot access their function directly as is typically done in other environ-
ments (e.g., ISA, PCI, and PCMCIA), since they are not mapped directly into
memory and I/O address space. Instead, USB device drivers must use the
USBD programming interface to access their devices.

USB clients view their USB devices as consisting of a given interface, which they
know how to manipulate. USB system software must report the interface type
and other device characteristics to USB clients.



USB System Architecture

66

USB Peripheral Connection

As stated in the previous chapters, USB provides a single type of connector for
attaching peripherals to a system. USB 2.0 also supports three different speeds
of USB devices:

• low-speed devices — 1.5Mb (megabits)/second
• full-speed devices — 12Mb/second
• high-speed devices — 480Mb/second

All USB devices attach via a USB hub that provides one or more ports. Figure 2-
27 on page 68 illustrates a variety of devices attached to USB ports provided by
the system. Hub ports may support only full- and low-speed or may support all
three speeds as illustrated in Figure 2-27. A device’s speed is detected when it is
attached to the hub port. (Refer to Chapter 5, entitled "LS/FS Signaling Environ-
ment," on page 93, and Chapter 11, entitled "The High-Speed Signaling Environ-
ment," on page 217 for details).

Some devices such as keyboards and mice typically operate at low speed, while
other devices such as digital telephones must operate at either full or high
speed. However, several connection issues can exist depending on the device
speed and the hub port capability as listed below:

• full-speed hub ports (1.x hubs) — support for LS and FS devices only
• high-speed hub ports (2.0 hubs) — support for LS, FS, and HS devices

Due to related EMI differences at the different transmission rates, the cables
used for low-speed versus full-/high-speed devices are subject to different elec-
trical characteristics. See Chapter 3 for details regarding the electrical character-
istics of the cables.

Full-Speed Hubs

Hubs based on the 1.0 and 1.1 versions of the specification can support only
low- and full-speed devices. These hubs block all full-speed traffic from reach-
ing low-speed devices attached to its ports. low-speed transactions targeting
these devices will always be preceded by a preamble packet that serves as a
command to l.x hubs to enable their low-speed ports. This ensures that low-
speed devices see only the low-speed transactions. 



Chapter 2: The Big Picture

67

Any high-speed capable devices attached to a 1.x hub must operate in full-
speed mode. Note that the minimum requirement is that a high-speed device
must permit access to its descriptors at full-speed, but may not function beyond
that basic capability.

High-Speed Hubs

Each USB high-speed capable port must support the attachment and operation
of high-, full- and low-speed devices. The HS hub interface detects the speed of
the device and makes the necessary adjustments to operate at the required
speed.

High-Speed Devices

The hub repeats high-speed packets to all ports that have high-speed devices
attached. The high-speed devices decode the high-speed packets to determine if
they are being targeted by the host.

Low- and Full-Speed Devices

When a low- or full-speed device is attached to a high-speed hub port, the hub
checks for high-speed split transactions that are targeted for one of the low- or
full-speed devices attached to its ports. When this occurs the hub translates the
high-speed split transaction into the required low- or full-speed transaction and
delivers it to the target device.

Topology

USB employs a tiered star topology where hubs provide attachment points for
USB devices. The host controller contains the root hub, which is the origin of all
USB ports in the system. As illustrated in Figure 2-27, three tiers are created by
the three hubs: the root hub, a 2.0 hub, and a 1.x hub. Note that devices of any
speed may be connected to any of the hub ports regardless of their speed. 



USB System Architecture

68

Figure 2-27: USB’s Tiered Star Topology

��� ���

�	
� �	��	����

��� ���

���

��� ���

���

��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��


��� ���

�� 	
��



